PredictableMemoryAccessOptimizations has become unmaintainable as-is.
RedundantLoadElimination does (almost) the same thing as PredictableMemoryAccessOptimizations.
It's not as powerful but good enough because PredictableMemoryAccessOptimizations is actually only needed for promoting integer values for mandatory constant propagation.
And most importantly: RedundantLoadElimination does not insert additional copies which was a big problem in PredictableMemoryAccessOptimizations.
Fixes rdar://142814676
Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
As with the lexical flag, when creating an alloc_stack corresponding to
an alloc_box, transfer the var_decl flag from any begin_borrow users of
the box.
Look through `upcast` and `init_existential_ref` instructions and replace the operand of this cast instruction with the original value.
For example:
```
%2 = upcast %1 : $Derived to $Base
%3 = init_existential_ref %2 : $Base : $Base, $AnyObject
checked_cast_br %3 : $AnyObject to Derived, bb1, bb2
```
This makes it more likely that the cast can be constant folded because the source operand's type is more accurate.
In the example above, the cast reduces to
```
checked_cast_br %1 : $Derived to Derived, bb1, bb2
```
which can be trivially folded to always-succeeds.
Found while looking at `_SwiftDeferredNSDictionary.bridgeValues()`
Previously we gave them the same SIL linkage as the method, then changed
the LLVM IR linkage to 'internal' (which is roughly equivalent to
SIL 'private') in IRGen.
This would crash in the SIL verifier if an @objc method was
'@_alwaysEmitIntoClient'. While such a combination of attributes is
silly since '@objc' methods are intrinsically part of the ABI, we
should not crash in this case.
The simplest fix is to just set the linkage to private at the SIL
level, avoiding the IRGen hack entirely.
Replaced the -disable-copy-propagation flag with
-enable-copy-propagation=false where the latter is a new multi-var
-enable-copy-propagation= which can take one of three values:
- true
- requested-passes-only
- false
This reverts commit a3b68e6df5.
Speculative revert because I believe it is the cause of the failures on
the swift-master-source-compat-suite-enable-verify-exclusivity bot.
rdar://58529726
This flag is set by DefinitInitialization if the lifetime of the stored value is controlled dynamically.
If the flag is set, it's not (easily) possibly to statically calculate the lifetime of the stored value.
This indicates that the "self" argument to the current function is always dynamically of the exact
static base class type, allowing metadata accesses in IRGen to use the local self metadata to answer
metadata requests for the class type. Set this attribute on allocating entry points of designated
inits, which is one of the most common places where we emit redundant metadata accesses.
This just eliminates -enable-sil-ownership from all target-swift-frontend and
target-swift-emit-silgen RUN lines. Both of those now include
enable-sil-ownership in their expansion.
This undoes some of Joe's work in 8665342 to add a guarantee: if an
@objc convenience initializer only calls other @objc initializers that
eventually call a designated initializer, it won't result in an extra
allocation. While Objective-C /allows/ returning a different object
from an initializer than the allocation you were given, doing so
doesn't play well with some very hairy implementation details of
compiled nib files (or NSCoding archives with cyclic references in
general).
This guarantee only applies to
(1) calling `self.init`
(2) where the delegated-to initializer is @objc
because convenience initializers must do dynamic dispatch when they
delegate, and Swift only stores allocating entry points for
initializers in a class's vtable. To dynamically find an initializing
entry point, ObjC dispatch must be used instead.
(It's worth noting that this patch does NOT check that the calling
initializer is a convenience initializer when deciding whether to use
ObjC dispatch for `self.init`. If we ever add peer delegation to
designated initializers, which is totally a valid feature, that should
use static dispatch and therefore should not go through objc_msgSend.)
This change doesn't /always/ result in fewer allocations; if the
delegated-to initializer ends up returning a different object after
all, the original allocation was wasted. Objective-C has the same
problem (one of the reasons why factory methods exist for things like
NSNumber and NSArray).
We do still get most of the benefits of Joe's original change. In
particular, vtables only ever contain allocating initializer entry
points, never the initializing ones, and never /both/ (which was a
thing that could happen with 'required' before).
rdar://problem/46823518
A recent SILCloner rewrite removed a special case hack for single
basic block callee functions:
commit c6865c0dff
Merge: 76e6c4157e9e440d13a6
Author: Andrew Trick <atrick@apple.com>
Date: Thu Oct 11 14:23:32 2018
Merge pull request #19786 from atrick/silcloner-cleanup
SILCloner and SILInliner rewrite.
Instead, the new inliner simply merges trivial unconditional branches
after inlining the return block. This way, the CFG is always in
canonical state after inlining. This is more robust, and avoids
interfering with subsequent SIL passes when non-single-block callees
are inlined.
The problem is that inlining a series of calls within a large block
could result in interleaved block splitting and merging operations,
which is quadratic in the block size. This showed up when inlining the
tens of thousands of array subscript calls emitted for a large array
initialization.
The first half of the fix is to simply defer block merging until all
calls are inlined. We can't expect SimplifyCFG to run immediately
after inlining, nor would we want to do that, *especially* for
mandatory inlining. This fix instead exposes block merging as a
trivial utility.
Note: by eliminating some unconditional branches, this change could
reduce the number of debug locations emitted. This does not
fundamentally change any debug information guarantee, and I was unable
to observe any behavior difference in the debugger.
Stop creating ImplicitlyUnwrappedOptional<T> so that we can remove it
from the type system.
Enable the code that generates disjunctions for Optional<T> and
rewrites expressions based on the original declared type being 'T!'.
Most of the changes supporting this were previously merged to master,
but some things were difficult to merge to master without actually
removing IUOs from the type system:
- Dynamic member lookup and dynamic subscripting
- Changes to ensure the bridging peephole still works
Past commits have attempted to retain as much fidelity with how we
were printing things as possible. There are some cases where we still
are not printing things the same way:
- In diagnostics we will print '?' rather than '!'
- Some SourceKit and Code Completion output where we print a Type
rather than Decl.
Things like module printing via swift-ide-test attempt to print '!'
any place that we now have Optional types that were declared as IUOs.
There are some diagnostics regressions related to the fact that we can
no longer "look through" IUOs. For the same reason some output and
functionality changes in Code Completion. I have an idea of how we can
restore these, and have opened a bug to investigate doing so.
There are some small source compatibility breaks that result from
this change:
- Results of dynamic lookup that are themselves declared IUO can in
rare circumstances be inferred differently. This shows up in
test/ClangImporter/objc_parse.swift, where we have
var optStr = obj.nsstringProperty
Rather than inferring optStr to be 'String!?', we now infer this to
be 'String??', which is in line with the expectations of SE-0054.
The fact that we were only inferring the outermost IUO to be an
Optional in Swift 4 was a result of the incomplete implementation of
SE-0054 as opposed to a particular design. This should rarely cause
problems since in the common-case of actually using the property rather
than just assigning it to a value with inferred type, we will behave
the same way.
- Overloading functions with inout parameters strictly by a difference
in optionality (i.e. Optional<T> vs. ImplicitlyUnwrappedOptional<T>)
will result in an error rather than the diagnostic that was added
in Swift 4.1.
- Any place where '!' was being used where it wasn't supposed to be
allowed by SE-0054 will now treat the '!' as if it were '?'.
Swift 4.1 generates warnings for these saying that putting '!'
in that location is deprecated. These locations include for example
typealiases or any place where '!' is nested in another type like
`Int!?` or `[Int!]`.
This commit effectively means ImplicitlyUnwrappedOptional<T> is no
longer part of the type system, although I haven't actually removed
all of the code dealing with it yet.
ImplicitlyUnwrappedOptional<T> is is dead, long live implicitly
unwrapped Optional<T>!
Resolves rdar://problem/33272674.
Previously, we just always promoted destroy_addr. With ownership, this does not
work as well since we need to be able to reason about the take operation that we
are performing. In the general case, this would require adding code to
pred-memopts for tracking reads and for compensation store code since we would
need to eliminate the store of the taken value to prevent a double use.
I am going to loop back around later in the year and add back this code once the
time is available. I filed SR-6341. In case any third party contributor is
interested in looking at re-enabling this optimization before I get back to it.
rdar://31521023