PredictableMemoryAccessOptimizations has become unmaintainable as-is.
RedundantLoadElimination does (almost) the same thing as PredictableMemoryAccessOptimizations.
It's not as powerful but good enough because PredictableMemoryAccessOptimizations is actually only needed for promoting integer values for mandatory constant propagation.
And most importantly: RedundantLoadElimination does not insert additional copies which was a big problem in PredictableMemoryAccessOptimizations.
Fixes rdar://142814676
Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
It lowers let property accesses of classes.
Lowering consists of two tasks:
* In class initializers, insert `end_init_let_ref` instructions at places where all let-fields are initialized.
This strictly separates the life-range of the class into a region where let fields are still written during
initialization and a region where let fields are truly immutable.
* Add the `[immutable]` flag to all `ref_element_addr` instructions (for let-fields) which are in the "immutable"
region. This includes the region after an inserted `end_init_let_ref` in an class initializer, but also all
let-field accesses in other functions than the initializer and the destructor.
This pass should run after DefiniteInitialization but before RawSILInstLowering (because it relies on `mark_uninitialized` still present in the class initializer).
Note that it's not mandatory to run this pass. If it doesn't run, SIL is still correct.
Simplified example (after lowering):
bb0(%0 : @owned C): // = self of the class initializer
%1 = mark_uninitialized %0
%2 = ref_element_addr %1, #C.l // a let-field
store %init_value to %2
%3 = end_init_let_ref %1 // inserted by lowering
%4 = ref_element_addr [immutable] %3, #C.l // set to immutable by lowering
%5 = load %4
In case of `var` initializations, SILGen creates a dynamic begin/end_access pair around the initialization store.
If it's an initialization (and not a re-assign) it's guanranteed that it's an exlusive access and we can convert the access to an `[init] [static]` access.
https://github.com/apple/swift/issues/66496
Replaced the -disable-copy-propagation flag with
-enable-copy-propagation=false where the latter is a new multi-var
-enable-copy-propagation= which can take one of three values:
- true
- requested-passes-only
- false
In a designated initializer of a non-root class, 'self' becomes
fully initialized after the 'super.init' call, at which point
escaping uses of 'self' become valid, and releases of 'self' are
lowered to a 'strong_release' instruction, which runs the
deinitializer.
In a root class, 'self' becomes fully initialized after all stored
properties have been initialized, at which point escaping uses of
'self' become valid.
However, DI would still lower a conditional destroy of 'self' by
destroying any initialized stored properties and freeing the object
with 'dealloc_partial_ref'. This is incorrect, because 'self' may
have escaped.
In the non-conditional destroy case, we correctly lowered the
release to a 'strong_release' if all stored properties are known
to be initialized.
Fix DI to handle the conditional destroy case by first checking if all
bits in the control variable are set, and releasing the instance with
'strong_release' if so. The 'dealloc_partial_ref' is only emitted
if not at least one stored property was not initialized.
This ensures that we don't deallocate an instance that may have
escaped.
Fixes <https://bugs.swift.org/browse/SR-13439>, <rdar://problem/67746791>,
<https://bugs.swift.org/browse/SR-13355>, <rdar://problem/67361228>.