Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
It is necessary for opaque values where for casts that will newly start
out as checked_cast_brs and be lowered to checked_cast_addr_brs, since
the latter has the source formal type, IRGen relies on being able to
access it, and there's no way in general to obtain the source formal
type from the source lowered type.
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
I am going to leave in the infrastructure around this just in case. But there is
no reason to keep this in the tests themselves. I can always just revert this
and I don't think merge conflicts are likely due to previous work I did around
the tooling for this.
Specializations are implementation details, and thus shouldn't be
public, even if they are specializing a public function. Without this
downgrade, the ABI of a module depends on random internal code
(could change inlining decisions etc.), as well as swiftc's optimiser.
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
One minor revision: this lifts the proposed restriction against
overriding a non-open method with an open one. On reflection,
that was inconsistent with the existing rule permitting non-public
methods to be overridden with public ones. The restriction on
subclassing a non-open class with an open class remains, and is
in fact consistent with the existing access rule.
This forces the callsites to be rewritten by the inliner.
we have the issue that the thunk changes from the time the its created to
the time its reread to figure out what we have done to the original function
This results in missed opportunities.
This solution solves the problem gracefully, because the thunk carries the information
on how to set up the call to the optimized functions.
Inlining the thunk makes the callsite calling the optimized function for free. i.e.
without any rewriting.
I did not measure any regression with this change.
This split the function signature module pass into 2 functin passes.
By doing so, this allows us to rewrite to using the FSO-optimized
function prior to attempting inlining, but allow us to do a substantial
amount of optimization on the current function before attempting to do
FSO on that function.
And also helps us to move to a model which module pass is NOT used unless
necesary.
I do not see regression nor improvement for on the performance test suite.
functionsignopts.sil and functionsignopt_sroa.sil are modified because the
mangler now takes into account of information in the projection tree.