Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
The "regular" CMO is done with the option `-cross-module-optimization`. It's good for performance but can increase code size.
Now, which this change CMO is also done if the option is not given, but in a very conservative way. Only very small functions are serialized and not additional type metadata is kept alive.
rdar://70082202
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
We had this for some cast instructions, but not for cast instructions with address-types.
Type dependent operands - like for dynamic self - are important for establishing a def-use relationship between the instruction/argument which defines the type and the instruction which uses the type.
Missing those dependencies can cause instructions or the dynamic-self argument to be removed while the type is still used in a cast instruction.
This change involved some class hierarchy gymnastics in SILInstruction.h.
Fixes a compiler crash.
rdar://problem/61816506