Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
The de-virtualizer utility didn't handle indirect error results when de-virtualizing class or actor methods.
This resulted in a missing argument for the indirect error result in the new try_apply instruction.
rdar://130545338
The old syntax was
@opened("UUID") constraintType
Where constraintType was the right hand side of a conformance requirement.
This would always create an archetype where the interface type was `Self`,
so it couldn't cope with member types of opened existential types.
Member types of opened existential types is now a thing with SE-0309, so
this lack of support prevented writing SIL test cases using this feature.
The new syntax is
@opened("UUID", constraintType) interfaceType
The interfaceType is a type parameter rooted in an implicit `Self`
generic parameter, which is understood to be the underlying type of the
existential.
Fixes rdar://problem/93771238.
Because partial_apply consumes it's arguments we need to copy them. This was done for "direct" parameters but not for address parameters.
rdar://problem/64035105
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
Specifically, we may have a loaded callee value from a stack value. This change
just makes it so that we do not optimize if we do not actually have the box.
rdar://56386236
This bug is caused by a quirk in the API of the linear lifetime
checker. Specifically, even though valueHasLinearLifetime is passed a SILValue
(the value whose lifetime one is checking), really it doesnt care about that
value (except for error diagnostics). Really it just cares about the parent
block of the value since it assumes that the value is guaranteed to dominate all
uses.
This creates a footgun when if one is writing code using "generic ossa/non-ossa"
routines on SILBuilder (the emit*Operation methods), if one in non-ossa code
calls that function, it returns the input value of the strong_retain. This
causes the linear lifetime error, to use the parent block of the argument of the
retain, instead of the parent block of the retain itself. This then causes it to
find the wrong leaking blocks and thus insert destroys in the wrong places.
I fix this problem in this commit by noting that the partial apply is our
original insertion point for the copy, so of course it is going to be in the
same block. So I changed the linear lifetime checker to check for leaks with
respect to the partial applies result.
In a subsequent commit, I am going to add a new API on top of this that is based
around the use of the value by the partial apply (maybe
extendLifetimeFromUseToInsertionPoint?). By using the use, it will express in
code more clearly what is happening here and will insert the copy for you.
rdar://54234011
This comes up because when we perform mandatory inlining, we perform the
transform as we inline. So the tests for this are in mandatory_inlining
naturally.
A recent SILCloner rewrite removed a special case hack for single
basic block callee functions:
commit c6865c0dff
Merge: 76e6c4157e9e440d13a6
Author: Andrew Trick <atrick@apple.com>
Date: Thu Oct 11 14:23:32 2018
Merge pull request #19786 from atrick/silcloner-cleanup
SILCloner and SILInliner rewrite.
Instead, the new inliner simply merges trivial unconditional branches
after inlining the return block. This way, the CFG is always in
canonical state after inlining. This is more robust, and avoids
interfering with subsequent SIL passes when non-single-block callees
are inlined.
The problem is that inlining a series of calls within a large block
could result in interleaved block splitting and merging operations,
which is quadratic in the block size. This showed up when inlining the
tens of thousands of array subscript calls emitted for a large array
initialization.
The first half of the fix is to simply defer block merging until all
calls are inlined. We can't expect SimplifyCFG to run immediately
after inlining, nor would we want to do that, *especially* for
mandatory inlining. This fix instead exposes block merging as a
trivial utility.
Note: by eliminating some unconditional branches, this change could
reduce the number of debug locations emitted. This does not
fundamentally change any debug information guarantee, and I was unable
to observe any behavior difference in the debugger.
Mostly functionally neutral:
- may fix latent bugs.
- may reduce useless basic blocks after inlining.
This rewrite encapsulates the cloner's internal state, providing a
clean API for the CRTP subclasses. The subclasses are rewritten to use
the exposed API and extension points. This makes it much easier to
understand, work with, and extend SIL cloners, which are central to
many optimization passes. Basic SIL invariants are now clearly
expressed and enforced. There is no longer a intricate dance between
multiple levels of subclasses operating on underlying low-level data
structures. All of the logic needed to keep the original SIL in a
consistent state is contained within the SILCloner itself. Subclasses
only need to be responsible for their own modifications.
The immediate motiviation is to make CFG updates self-contained so
that SIL remains in a valid state. This will allow the removal of
critical edge splitting hacks and will allow general SIL utilities to
take advantage of the fact that we don't allow critical edges.
This rewrite establishes a simple principal that should be followed
everywhere: aside from the primitive mutation APIs on SIL data types,
each SIL utility is responsibile for leaving SIL in a valid state and
the logic for doing so should exist in one central location.
This includes, for example:
- Generating a valid CFG, splitting edges if needed.
- Returning a valid instruction iterator if any instructions are removed.
- Updating dominance.
- Updating SSA (block arguments).
(Dominance info and SSA properties are fundamental to SIL verification).
LoopInfo is also somewhat fundamental to SIL, and should generally be
updated, but it isn't required.
This also fixes some latent bugs related to iterator invalidation in
recursivelyDeleteTriviallyDeadInstructions and SILInliner. Note that
the SILModule deletion callback should be avoided. It can be useful as
a simple cache invalidation mechanism, but it is otherwise bug prone,
too limited to be very useful, and basically bad design. Utilities
that mutate should return a valid instruction iterator and provide
their own deletion callbacks.
And fix it's handling of guaranteed closure contexts.
Guaranteed/unowned captures and guaranteed contexts are *not* released
by a call of the closure.
I assume we have not seen this because we don't see code that would
trigger this comming out of the frontend ...
SR-5441
rdar://33255593
Support for @noescape SILFunctionTypes.
These are the underlying SIL changes necessary to implement the new
closure capture ABI.
Note: This includes a change to function name mangling that
primarily affects reabstraction thunks.
The new ABI will allow stack allocation of non-escaping closures as a
simple optimization.
The new ABI, and the stack allocation optimization, also require
closure context to be @guaranteed. That will be implemented as the
next step.
Many SIL passes pattern match partial_apply sequences. These all
needed to be fixed to handle the convert_function that SILGen now
emits. The conversion is now needed whenever a function declaration,
which has an escaping type, is passed into a @NoEscape argument.
In addition to supporting new SIL patterns, some optimizations like
inlining and SIL combine are now stronger which could perturb some
benchmark results.
These underlying SIL changes should be merged now to avoid conflicting
with other work. Minor benchmark discrepancies can be investigated as part of
the stack-allocation work.
* Add a noescape attribute to SILFunctionType.
And set this attribute correctly when lowering formal function types to SILFunctionTypes based on @escaping.
This will allow stack allocation of closures, and unblock a related ABI change.
* Flip the polarity on @noescape on SILFunctionType and clarify that
we don't default it.
* Emit withoutActuallyEscaping using a convert_function instruction.
It might be better to use a specialized instruction here, but I'll leave that up to Andy.
Andy: And I'll leave that to Arnold who is implementing SIL support for guaranteed ownership of thick function types.
* Fix SILGen and SIL Parsing.
* Fix the LoadableByAddress pass.
* Fix ClosureSpecializer.
* Fix performance inliner constant propagation.
* Fix the PartialApplyCombiner.
* Adjust SILFunctionType for thunks.
* Add mangling for @noescape/@escaping.
* Fix test cases for @noescape attribute, mangling, convert_function, etc.
* Fix exclusivity test cases.
* Fix AccessEnforcement.
* Fix SILCombine of convert_function -> apply.
* Fix ObjC bridging thunks.
* Various MandatoryInlining fixes.
* Fix SILCombine optimizeApplyOfConvertFunction.
* Fix more test cases after merging (again).
* Fix ClosureSpecializer. Hande convert_function cloning.
Be conservative when combining convert_function. Most of our code doesn't know
how to deal with function type mismatches yet.
* Fix MandatoryInlining.
Be conservative with function conversion. The inliner does not yet know how to
cast arguments or convert between throwing forms.
* Fix PartialApplyCombiner.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
Once we move to a copy-on-write implementation of existential value buffers we
can no longer consume or destroy values of an opened existential unless the
buffer is uniquely owned.
Therefore we need to track the allowed operation on opened values.
Add qualifiers "mutable_access" and "immutable_access" to open_existential_addr
instructions to indicate the allowed access to the opened value.
Once we move to a copy-on-write implementation, an "open_existential_addr
mutable_access" instruction will ensure unique ownership of the value buffer.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Officially kick SILBoxType over to be "nominal" in its layout, with generic layouts structurally parameterized only by formal types. Change SIL to lower a capture to a nongeneric box when possible, or a box capturing the enclosing generic context when necessary.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments