Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
It is necessary for opaque values where for casts that will newly start
out as checked_cast_brs and be lowered to checked_cast_addr_brs, since
the latter has the source formal type, IRGen relies on being able to
access it, and there's no way in general to obtain the source formal
type from the source lowered type.
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
replaced by retain release code motion. This code has been disabled for sometime now.
This should bring the retain release code motion into a close. The retain release
code motion pipeline looks like this. There could be some minor cleanups after this though.
1. We perform a global data flow for retain release code motion in RRCM (RetainReleaseCodeMotion)
2. We perform a local form of retain release code motion in SILCodeMotion. This is more
for cases which can not be handled in RRCM. e.g. sinking into a switch is more efficiently
done in a local form, the retain is not needed on the None block. Release on SILArgument needs
to be split to incoming values, this can not be done in RRCM and other cases.
3. We do not perform code motion in ASO, only elimination which are very important.
Some modifications to test cases, they look different, but functionally the same.
RRCM has this canonicalization effect, i.e. it uses the rc root, instead of
the SSA value the retain/release is currently using. As a result some test cases need
to be modified.
I also removed some test cases that do not make sense anymore and lot of duplicate test
cases between earlycodemotion.sil and latecodemotion.sil. These tests cases only have retains
and should be used to test early code motion.