In some circumstances, a Swift declaration in module A will depend on
another declaration (usually from Objective-C) that can't be loaded,
for whatever reason. If the Swift declaration is *overriding* the
missing declaration, this can present a problem, because the way
methods are dispatched in Swift can depend on knowing the original
class that introduced the method. However, if the compiler can prove
that the override can still be safely invoked/used in all cases, it
doesn't need to worry about the overridden declaration being missing.
This is especially relevant for property accessors, because there's
currently no logic to recover from a property being successfully
deserialized and then finding out that an accessor couldn't be.
The decision of whether or not an override can be safely invoked
without knowledge of the base method is something to be cautious
about---a mistaken analysis would effectively be a miscompile. So up
until now, this was limited to one case: when a method is known to be
`@objc dynamic`, i.e. always dispatched through objc_msgSend. (Even
this may become questionable if we have first-class method references,
like we do for key paths.) This worked particularly well because the
compiler infers 'dynamic' for any overload of an imported Objective-C
method or accessor, in case it imports differently in a different
-swift-version and a client ends up subclassing it.
However...that inference does not apply if the class is final, because
then there are no subclasses to worry about.
This commit changes the test to be more careful: if the /missing/
declaration was `@objc dynamic`, we know that it can't affect ABI,
because either the override is properly `@objc dynamic` as well, or
the override has introduced its own calling ABI (in practice, a direct
call for final methods) that doesn't depend on the superclass. Again,
this isn't 100% correct in the presence of first-class methods, but it
does fix the issue in practice where a property accessor in a parent
class goes missing. And since Objective-C allows adding property
setters separately from the original property declaration, that's
something that can happen even under normal circumstances. Sadly.
This approach could probably be extended to constructors as well. I'm
a little more cautious about throwing vars and subscripts into the mix
because of the presence of key paths, which do allow identity-based
comparison of overrides and bases.
rdar://problem/56388950
If we can't resolve a cross-reference unambiguously, we're supposed to
produce an llvm::Error and let the calling code handle it. However, if
we couldn't even resolve the /type/ of the cross-reference, we would
just crash. Follow the supported error path in that case too -- in
many cases the error can just propagate upwards to something that can
handle it.
rdar://problem/34821187, plus an extra test case from
rdar://problem/35157494. (The latter will be fixed better later, but
meanwhile let's not regress on the crashing part.)
This is the same as the last few commits, but with the additional
complication of designated initializers affecting other behavior
around the type. In particular, convenience initializers cannot be
invoked on subclasses if the designated initializers are not all
present on the subclass. If a designated initializer is dropped, it's
not possible to satisfy that.
It would be nice to do better here, since a class's initializers are
mostly independent of the superclass's initializers. Unfortunately, it
still affects whether /this/ class can inherit convenience
initializers, as well as vtable layout. This is conservative, at
least.
Like the previous commit, but with added trickiness because we also
serialize the form of the PatternBindingDecl a property came from.
Make getPattern handle a failure in the simple case that overrides
use, and pass that up to the PatternBindingDecl initialization. (This
can result in zero-element PatternBindingDecls, but that's fine.)
'getPattern' is also a change from 'maybeGetPattern', but every caller
knows how many patterns it expects, so accomodating the "maybe" case
is no longer important.
That is, a Swift 3 target imported into a Swift 4 context or vice
versa. This requires serializing the compatibility mode explicitly,
instead of including it in the textual version string that's only
for debugging.
Proof-of-concept for this sort of recovery. In the real world, it's
more likely that this will happen due to differences between Swift 3
and Swift 4, rather than changes in what macros are defined, but the
latter can still happen when debugging.
There's a lot to do here to consider this production-ready. There are
no generics involved and no potential circular references, and the
/rest/ of the compiler isn't prepared for this either. But it's cool
to see it working!
Actually recovering is hidden behind the new
-enable-experimental-deserialization-recovery option; without it the
compiler will continue to eagerly abort.