This test appears flaky and it looks to be related to errors on modules
in the SDK from the timing with other failures. The flackiness is likely
from non-determinism in the module cache. Update the test to use a local
cache, which is a good practice for any test importing a module from the
SDK.
rdar://144272339
When using `-experimental-skip-all-function-bodies` we don’t run the `TypeCheckSourceFileRequest` and thus don’t go through the decl checker, which calls `InheritedTypeRequest` on all inheritance clauses. This means that the inherited entries are not populated by the time we serialize the module. Trigger the computation of inherited entries by calling `InheritedTypeRequest` during serialization.
Unfortunately, we can’t use the type returned by `getResolvedType` for the serialization because `getResolvedType` returns an inverted protocol type for suppressed conformances but during serialization, we want to serialize the suppressed type with a `isSuppressedBit`. We thus need to call `getEntry(i).getType()` again to get the type to serialize.
rdar://141440011
A `@backDeployed` function printed in a `.swiftinterface` must have a function
body so that SILGen can emit a fallback copy to call when the back deployed
function is unavailable. Previously, the compiler would crash in SILGen when
compiling an interface containing a back deployed function without a body.
Resolves rdar://141593108.
A `@backDeployed` function printed in a `.swiftinterface` must have a function
body so that SILGen can emit a fallback copy to call when the back deployed
function is unavailable. Previously, the compiler would crash in SILGen when
compiling an interface containing a back deployed function without a body.
Resolves rdar://141593108.
When serializing the module interface path of an interface that
is part of the SDK, we serialize relative to the SDK path. During
deserialization we need to know if a path was serialized relative
to the SDK or not. The existing logic assumes any relative path
has been serialized relative to the SDK, which makes it impossible
to compile modules from relative swiftinterface paths that are not
part of the SDK.
Update the swiftmodule file to include an attribute to show if the
path was serialized relative to the SDK or not, which is used
during deserialization to correctly reconstruct the interface path.
Rename decls are typically derived from the rename strings attached to a
`@available` attributes. It shouldn't be necessary to serialize the cached
rename decls since they can be rederived. The only decls that have rename decls
and don't have reanme strings are synthesized by ClangImporter and don't get
serialized.
Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
Opaque type metadata accessor functions could be miscompiled for functions that
contain `if #available` checks for inactive platforms. For example, this
function will always return `A` when compiled for macOS, but the opaque type
accessor would instead return the type metadata for `B`:
```
func f() -> some P {
if #available(iOS 99, *) {
return A() // Returns an A on macOS
} else {
return B()
}
}
```
Resolves rdar://139487970.
This patch adds support for serialization and deserialization of
debug scopes.
Debug scopes are serialized in post order and enablement is
controlled through the experimental-serialize-debug-info flag which
is turned off by default. Functions only referred to by these debug
scopes are deserialized as zombie functions directly.
Find all the usages of `--enable-experimental-feature` or
`--enable-upcoming-feature` in the tests and replace some of the
`REQUIRES: asserts` to use `REQUIRES: swift-feature-Foo` instead, which
should correctly apply to depending on the asserts/noasserts mode of the
toolchain for each feature.
Remove some comments that talked about enabling asserts since they don't
apply anymore (but I might had miss some).
All this was done with an automated script, so some formatting weirdness
might happen, but I hope I fixed most of those.
There might be some tests that were `REQUIRES: asserts` that might run
in `noasserts` toolchains now. This will normally be because their
feature went from experimental to upcoming/base and the tests were not
updated.
The diagnostics about unintended override of Objective-C methods
deserializes more decls than strictly necessary. Any of these could
trigger a deserialization failure if they rely on missing dependencies.
Simply ignore methods failing to deserialize instead of crashing.
We could do better here as this logic may ignore methods that are actually
colliding. Instead we could put more information in the lookup table to
avoid the need for fully deserializing the decl.
rdar://138764733
Use the `%target-swift-5.1-abi-triple` substitution to compile the tests for
deployment to the minimum OS versions required for use of _Concurrency APIs,
instead of disabling availability checking.
The thunk's parameter needs the @in_guaranteed convention if it's a
const reference parameter. However, that convention wasn't being used
because clang importer was removing the const reference from the
type and SILGen was computing the type of the parameter based on the
type without const reference.
This commit fixes the bug by passing the clang function type to
SILDeclRef so that it can be used to compute the correct thunk type.
This fixes a crash when a closure is passed to a C function taking a
pointer to a function that has a const reference struct parameter.
This recommits e074426 with fixes to
serialization/deserialization of function types. The fixes prevent clang
types of functions from being dropped during serialization.
rdar://131321096