A protocol conformance can be ill-formed due to isolation mismatches
between witnesses and requirements, or with associated conformances.
Previously, such failures would be emitted as a number of separate
errors (downgraded to warnings in Swift 5), one for each witness and
potentially an extra for associated conformances. The rest was a
potential flood of diagnostics that was hard to sort through.
Collect all of the isolation-related problems for a given conformance
together and produce a single error (downgraded to a warning when
appropriate) that describes the overall issue. That error will have up
to three notes suggesting specific courses of action:
* Isolating the conformance (when the experimental feature is enabled)
* Marking the witnesses as 'nonisolated' where needed
*
The diagnostic also has notes to point out the witnesses/associated
conformances that have isolation problems. There is a new educational
note that also describes these options.
We give the same treatment to missing 'distributed' on witnesses to a
distributed protocol.
When diagnosing an isolation mismatch between a requirement and witness,
we would produce notes on the requirement itself suggesting the addition of
`async`. This is almost never what you want to do, and is often so far
away from the actual conforming type as to be useless. Remove this note,
and the non-function fallback that just points at the requirement, because
they are unhelpful.
This is staging for a rework of the way we deal with conformance-level
actor isolation problems.
Implement lookup of availability domains for identifiers on
`AvailabilityDomainOrIdentifier`. Add a bit to that type which represents
whether or not lookup has already been attempted. This allows both
`AvailableAttr` and `AvailabilitySpec` to share a common implementation of
domain lookup.
An `AvailableAttr` written in source with an unrecognized availability domain
is now only marked invalid after type-checking the attribute. This resulted in a
regression where `CaseIterable` synthesis was blocked incorrectly under the
following very narrow circumstances:
1. Every `@available` attribute on the elements of the enum is invalid.
2. The module is being emitted and lazy type-checking is enabled.
3. The enum is public and the only top-level declaration in the file.
Type-checking the attribute was delayed just enough that it would not be
considered invalid by the type the `CaseIterable` conformance was being
synthesized, resulting in a spurious error.
There were zero tests exercising `CaseIterable` synthesis for enums with
elements that have availability requirements, so I added some.
Resolves rdar://144897917.
`x declared here` is not helpful and clear enough, especially when there
are other notes attached. Swap it for a new note that says
`requirement x declared here`.
Some editors use diagnostics from SourceKit to replace build issues. This causes issues if the diagnostics from SourceKit are formatted differently than the build issues. Make sure they are rendered the same way, removing most uses of `DiagnosticsEditorMode`.
To do so, always emit the `add stubs for conformance` note (which previously was only emitted in editor mode) and remove all `; add <something>` suffixes from notes that state which requirements are missing.
rdar://129283608
Obsoleting `AnyActor` in Swift 6 blocks the Concurrency library itself
from migrating to Swift 6, because `Actor` and `DistributedActor` have to
preserve their refinement of `AnyActor` to avoid breaking code currently
using the marker protocol. There's no way to move protocol refinement into
an extension so that the use-site declaration can be obsoleted, so we're
stuck with just the deprecation of `AnyActor`.
* implementing changes and tests
* added unit test using throws
* adding test with distributed actor
* moved distributed-actor tests to another file
* revert import Distributed
The cached values for `hasOnlyCasesWithoutAssociatedValues()` and
`hasPotentiallyUnavailableCaseValue()` are computed in a single pass over the
elements of an `EnumDecl`. However, the pass would return early after finding
an element with an associated value, without checking whether any of the rest
of the elements were potentially unavailable. This made `Comparable` synthesis
succeed for any enum with potentially unavailable elements so long as the first
element in the enum has an associated value.
The compiler derived implementations of `Codable` conformances for enums did
not take enum element unavailability into account. This could result in
unavailable values being instantiated at runtime, leading to a general
violation of the invariant that unavailable code is unreachable at runtime.
This problem is possible because synthesized code is not type checked; had the
conformances been hand-written, they would have been rejected for referencing
unavailable declarations inside of available declarations.
This change specifically alters derivation for the following declarations:
- `Decodable.init(from:)`
- `Encodable.encode(to:)`
- `CodingKey.init(stringValue:)`
Resolves rdar://110098469
[Distributed] generic and inner test; without one edge case
[Distributed] fix distributed_thunk test; unsure about those extra hops, could remove later
[Distributed] Remove type pretending in getSILFunctionType; it is not needed
It seems our constant replacement in the earlier phases is enough, and
we don't need this trick at all.
[Distributed] Use thunk when calling cross-actor on DA protocols
Reimplement the final client of ActorIsolationRestriction, conformance
isolation checking, to base it on the new "actor reference" logic.
Centralize the diagnostics emission so we have a single place where we
emit the primary diagnostic (which is heavily customized based on
actor isolation/distributed/etc.) and any relevant notes to make
adjustments to the witness and/or requirement, e.g., adding
'distributed', 'async', 'throws', etc. Improve the diagnostics
slightly by providing Fix-Its when suggesting that we add "async"
and/or "throws".
With the last client of ActorIsolationRestriction gone, remove it
entirely.