In `ConstraintGenerator::visitDeclRefExpr` instead of using
`getInterfaceType()` for unknown type and later mapping it into
context, let's use `getType()` which does that interally, that
allows to detect presence of error types in resulting type and
abort constraint generation.
If the setter conflict occurs in a deserialized declaration, the parent
pattern binding can be NULL. Guard the fixit on the existence of the
pattern binding so
1) we don't crash
2) we don't try to emit a fixit in otherwise extremely broken code
rdar://56558082
Name lookup might find an associated type whose protocol is not in our
conforms-to list, if we have a superclass constraint and the superclass
conforms to the associated type's protocol.
We used to return an unresolved type in this case, which would result in
the constraint getting delayed forever and dropped.
While playing wack-a-mole with regressing crashers, I had to do some
refactoring to get all the tests to pass. Unfortuanately these refactorings
don't lend themselves well to being peeled off into their own commits:
- maybeAddSameTypeRequirementForNestedType() was almost identical to
concretizeNestedTypeFromConcreteParent(), except for superclasses
instead of concrete same-type constraints. I merged them together.
- We used to drop same-type constraints where the subject type was an
ErrorType, because maybeResolveEquivalenceClass() would return an
unresolved type in this case.
This violated some invariants around nested types of ArchetypeTypes,
because now it was possible for a nested type of a concrete type to
be non-concrete, if the type witness in the conformance was missing
due to an error.
Fix this by removing the ErrorType hack, and adjusting a couple of
other places to handle ErrorTypes in order to avoid regressing with
invalid code.
Fixes <rdar://problem/45216921>, <https://bugs.swift.org/browse/SR-8945>,
<https://bugs.swift.org/browse/SR-12744>.
When a Swift declaration witnesses an ObjC protocol requirement, its error convention needs to
match the requirement. Furthermore, if there are different protocol requirements that the
Swift method can witness, with different error conventions, we need to bail out because we
can't simultaneously match all of them. Fixes rdar://problem/59496036 | SR-12201.
* [Diagnostics] Emit a warning when an immutable decodable property has an initial value
* [Sema] Use Decl::diagnose instead of Diags.diagnose
* [AST] Remove property name from 'decodable_property_will_not_be_decoded' diagnostic
* [Test] Update tests
* [Test] Update existing codable tests
* [Typechecker] Allow enum cases without payload to witness a static get-only property with Self type protocol requirement
* [SIL] Add support for payload cases as well
* [SILGen] Clean up comment
* [Typechecker] Re-enable some previously disabled witness matching code
Also properly handle the matching in some cases
* [Test] Update typechecker tests with payload enum test cases
* [Test] Update SILGen test
* [SIL] Add two FIXME's to address soon
* [SIL] Emit the enum case constructor unconditionally when an enum case is used as a witness
Also, tweak SILDeclRef::getLinkage to update the 'limit' to 'OnDemand' if we have an enum declaration
* [SILGen] Properly handle a enum witness in addMethodImplementation
Also remove a FIXME and code added to workaround the original bug
* [TBDGen] Handle enum case witness
* [Typechecker] Fix conflicts
* [Test] Fix tests
* [AST] Fix indentation in diagnostics def file
Make the message within 80 columns width
Improve diagnostic for read-only properties
Improve diagnostic for read-only properties
Improve diagnostic for read-only properties
The semantic checks for CodingKeys are being duplicated across the value witness synthesis code paths. Just synthesize a CodingKeys enum and let validateCodingKeysEnum do the heavy lifting when we actually need to go emit diagnostics.
Swift classes cannot meaningfully conform to NSObjectProtocol.
Inheriting from NSObject is the appropriate fix, so suggest that.
Fixes rdar://problem/32543753.
This breaks source compatibility a little bit more than we'd like, so
reverting it for now.
Fixes <rdar://problem/57213598>.
This reverts commit 04fbcc0149.
Previously we did this as a last resort if inference fails. The new
behavior is technically source-breaking, but I suspect nobody
relied on the old behavior.
This can help avoid cycles by eliminating some unnecessary validation work.
Fixes <https://bugs.swift.org/browse/SR-11407>, <rdar://problem/54979757>.
If a protocol requirement has a type that's a nested member
type of another member type, eg,
protocol P {
associatedtype A : Q
func f(_: A.B)
}
Then we don't actually want to use 'f()' to infer the witness
for 'A'. By avoiding doing so, we eliminate some cycles which
can allow some programs to type check that didn't before.
* [TypeChecker] Enclosing stubs protocol note within editor mode
* [test] Removing note from test where there is no -diagnostics-editor-mode flag
* Formatting modified code
* [tests] Fixing tests under validation-tests
Overload resolution performs a lookup rooted at a pattern binding's
initializer that scoops up the var decl bound by the pattern. This
forces it to validate the variable while type checking said variable's
initializer. The old answer to this problem was to skip validation
which returns a temporary ErrorType. We should patch lookup so it
doesn't consider these variables.
This is an amalgam of simplifications to the way VarDecls are checked
and assigned interface types.
First, remove TypeCheckPattern's ability to assign the interface and
contextual types for a given var decl. Instead, replace it with the
notion of a "naming pattern". This is the pattern that semantically
binds a given VarDecl into scope, and whose type will be used to compute
the interface type. Note that not all VarDecls have a naming pattern
because they may not be canonical.
Second, remove VarDecl's separate contextual type member, and force the
contextual type to be computed the way it always was: by mapping the
interface type into the parent decl context.
Third, introduce a catch-all diagnostic to properly handle the change in
the way that circularity checking occurs. This is also motivated by
TypeCheckPattern not being principled about which parts of the AST it
chooses to invalidate, especially the parent pattern and naming patterns
for a given VarDecl. Once VarDecls are invalidated along with their
parent patterns, a large amount of this diagnostic churn can disappear.
Unfortunately, if this isn't here, we will fail to catch a number of
obviously circular cases and fail to emit a diagnostic.