These fail with -requirement-machine-protocol-signatures=verify because
the GSB produces incorrect output. Enable the requirement machine
unconditionally for these tests, bypassing verification.
A new file test/Generics/same_type_requirements_in_protocol.swift
contains reduced versions of all of the failures, with FileCheck
used to confirm the exact requirement signature output.
* [Distributed] towards DistributedActorSystem; synthesize the id earlier, since Identifiable.id
* Fix execute signature to what Pavel is working with
* funcs are ok in sil
* fixed lifetime of id in inits
* fix distributed_actor_deinit
* distributed_actor_local
* update more tests
fixing tests
fix TBD test
fix Serialization/distributed
fix irgen test
Fix null pointer crashes
* prevent issues with null func ptrs and fix Distributed prorotocol test
* fix deinit sil test
This reverts commit 4323d2fa26, reversing
changes made to 451b902cd5.
This caused linking errors on the swift source compat suite in the
Sourcery project.
rdar://86256970
The main effect of this change is that diagnostics about Sendable
conformances now follow the same minimal/full logic used for other
Sendable diagnostics, rather than having their own separate
computation.
One can overload on async vs. non-async, and the constraint solver has a
preference rule based on context. Extend that preference rule to
witness matching, so we prefer a witness that exactly matches the
effects of the requirement to one that has fewer effects.
Fixes rdar://84034057.
* [Distributed] Handle more cases of isolation, protocols, better errors/notes
* [Concurrency] Actor sync funcs can conform to async protocol reqs
* [Distributed] Offer fixit to add DistributedActor to type when dist func is encountered
* [Distributed] Witness protocol reqs in dist actor protocol extensions
* try to address availability issues
The concurrency runtime now deploys back to macOS 10.15, iOS 13.0, watchOS 6.0, tvOS 13.0, which corresponds to the 5.1 release of the stdlib.
Adjust macro usages accordingly.
This attribute creates an unavailable extension with a `Sendable` conformance so that the type is explicity marked as not being `Sendable`.
We also fully suppress diagnostics about unavailable Sendable conformances in Swift 5 mode code. (This is not fully developed yet—it should return to being a warning in concurrent contexts.)
The behavior when a @_nonSendable and a Sendable conformance are both on the same type is also not right yet.
Returning a null GenericSignature is not the right way to break a cycle,
because then callers have to be careful to handle the case of a null
GenericSignature together with a non-null GenericParamList, for example
in applyGenericArguments().
An even worse problem can occur when a GenericSignatureRequest for a
nested generic declaration requests the signature of the parent context,
which hits a cycle. In this case, we would build a signature where
the first generic parameter did not have depth 0.
This makes the requirement machine upset, so this patch implements a new
strategy to break such cycles. Instead of returning a null
GenericSignature, we build a signature with the correct generic
parameters, but no requirements. The generic parameters can be computed
just by traversing GenericParamLists, which does not trigger more
GenericSignatureRequests, so this should be safe.
The following regression test added for this feature is not passing:
Swift(linux-x86_64) :: decl/protocol/protocols_with_self_or_assoc_reqs_executable.swift
with a compiler crash happening during SILFunctionTransform "Devirtualizer".
Reverting to unblock CI.
This reverts commit f96057e260, reversing
changes made to 3fc18f3603.
Extend the diagnostics for `Sendable` conformances to always diagnose
missing `Sendable` conformances for nominal types that are within the
same module. The intuition here is that if the type is in the same
module, it can be updated and evaluated at the same time as code
requiring the `Sendable` conformance is introduced.
Another part of rdar://78269348.
Rework Sendable checking to be completely based on "missing"
conformances, so that we can individually diagnose missing Sendable
conformances based on both the module in which the conformance check
happened as well as where the type was declared. The basic rules here
are to only diagnose if either the module where the non-Sendable type
was declared or the module where it was checked was compiled with a
mode that consistently diagnoses `Sendable`, either by virtue of
being Swift 6 or because `-warn-concurrency` was provided on the
command line. And have that diagnostic be an error in Swift 6 or
warning in Swift 5.x.
There is much tuning to be done here.