With `ARCMigrate` and `arcmt-test` removed from clang in
https://github.com/llvm/llvm-project/pull/119269 and the new code
migration experience under way (see
https://github.com/swiftlang/swift-evolution/pull/2673), these options
are no longer relevant nor known to be in use. They were introduced
long ago to support fix-it application in Xcode.
For now, turn them into a no-op and emit a obsoletion warning.
(cherry picked from commit 46c394788a84d5932289c71274dd32ea2d61d9dc)
Now that IUOs are supported for compound function
references, we can properly set the compound bit
here.
This is a source breaking change since this used
to be legal:
```swift
struct S {
static func foo(x: Int) -> Self { .init() }
}
let _: S = .foo(x:)(x: 0)
```
However I somewhat doubt anyone is intentionally
writing code like that.
Today ParenType is used:
1. As the type of ParenExpr
2. As the payload type of an unlabeled single
associated value enum case (and the type of
ParenPattern).
3. As the type for an `(X)` TypeRepr
For 1, this leads to some odd behavior, e.g the
type of `(5.0 * 5).squareRoot()` is `(Double)`. For
2, we should be checking the arity of the enum case
constructor parameters and the presence of
ParenPattern respectively. Eventually we ought to
consider replacing Paren/TuplePattern with a
PatternList node, similar to ArgumentList.
3 is one case where it could be argued that there's
some utility in preserving the sugar of the type
that the user wrote. However it's really not clear
to me that this is particularly desirable since a
bunch of diagnostic logic is already stripping
ParenTypes. In cases where we care about how the
type was written in source, we really ought to be
consulting the TypeRepr.
Doing it in the post-walk meant we ended up
walking the children twice, which lead to duplicate
diagnostics and incorrect inference of the
level of application for function references. Move
it to the pre-walk, ensuring that we resolve any
operator references before folding.
This PR refactors the ASTDumper to make it more structured, less mistake-prone, and more amenable to future changes. For example:
```cpp
// Before:
void visitUnresolvedDotExpr(UnresolvedDotExpr *E) {
printCommon(E, "unresolved_dot_expr")
<< " field '" << E->getName() << "'";
PrintWithColorRAII(OS, ExprModifierColor)
<< " function_ref=" << getFunctionRefKindStr(E->getFunctionRefKind());
if (E->getBase()) {
OS << '\n';
printRec(E->getBase());
}
PrintWithColorRAII(OS, ParenthesisColor) << ')';
}
// After:
void visitUnresolvedDotExpr(UnresolvedDotExpr *E, StringRef label) {
printCommon(E, "unresolved_dot_expr", label);
printFieldQuoted(E->getName(), "field");
printField(E->getFunctionRefKind(), "function_ref", ExprModifierColor);
if (E->getBase()) {
printRec(E->getBase());
}
printFoot();
}
```
* Values are printed through calls to base class methods, rather than direct access to the underlying `raw_ostream`.
* These methods tend to reduce the chances of bugs like missing/extra spaces or newlines, too much/too little indentation, etc.
* More values are quoted, and unprintable/non-ASCII characters in quoted values are escaped before printing.
* Infrastructure to label child nodes now exists.
* Some weird breaks from the normal "style", like `PatternBindingDecl`'s original and processed initializers, have been brought into line.
* Some types that previously used ad-hoc dumping functions, like conformances and substitution maps, are now structured similarly to the dumper classes.
* I've fixed the odd dumping bug along the way. For example, distributed actors were only marked `actor`, not `distributed actor`.
This PR doesn't change the overall style of AST dumps; they're still pseudo-S-expressions. But the logic that implements this style is now isolated into a relatively small base class, making it feasible to introduce e.g. JSON dumping in the future.
Stop pretending that an optional requirement is immutable via the `StorageImplInfo` request.
This approach has lead astray the conformance checker and may have had a negative impact
on other code paths, and it doesn't work for imported declarations because they bypass the
request. Instead, use a forwarding `AbstractStorageDecl::isSettableInSwift` method
that special-cases optional requirements.
The change to resolve ObjC #keyPath expression components caused some source
breakage as they are now being checked for availability issues. This change
updates availability checking to demote error diagnostics to warnings
within #keyPath expressions. There were cases in the source compat suite where
unavailble properites were used in #keyPath expressions, but they caused no
issues at runtime because the properties' ObjC runtime name was still correct
(e.g. the same as its renamed-to property in Swift).
Unlike \keypath expressions, only the property components of #keypath
expressions were being resolved, so index wouldn't pick up references for their
qualifying types.
Also fixes a code completion bug where it was reporting members from the Swift
rather than ObjC side of bridged types.
Resolves rdar://problem/61573935
Unlike \keypath expressions, only the property components of #keypath
expressions were being resolved, so index wouldn't pick up references for their
qualifying types.
Also fixes a code completion bug where it was reporting members from the Swift
rather than ObjC side of bridged types.
Resolves rdar://problem/61573935
Since `binding` has all of the required information now it's possible
to use its `locator` as a source of type variable assignment
(`Bind` constraint) in `TypeVariableBinding::attempt` which helps
to improve diagnostics.
This fixes the last couple of instances of the interpreter not being
passed to the python the scripts which makes them fail on OSes where
shebangs are not honoured (i.e. Windows)
This allows us to skip attempting actual conversions.
This speeds up one of our slow test cases, and perturbs the output of
another test. In the latter case, we stop emitting conversions as part
of the non-semantic piece of the array_expr. The fact that we're not
putting conversions in on that path is something I've seen before in
other instances. I'll open a bug if I cannot find one for it, although
I believe it's entirely cosmetic in this case since we don't rely on
the conversion being there.
- Many tests got broken because of two things:
- AST dump now outputs to stdout, but many tests expected stderr. This was a straightforward fix.
- Many tests call swift with specific parameters; specifically, many call `swift frontend` directly. This makes them go through the compiler in unexpected ways, and specifically it makes them not have primary files, which breaks the new AST dump implementation. This commit adds the old implementation as a fallback for those cases, except it dumps to `stdout` to maintain some consistence.
Finally, the `/test/Driver/filelists.swift` failed for unknown reasons. It seems its output now had some lines out of order, and fixing the order made the test pass. However, as the reasons why it failed are unknown, this fix might not have been a good idea. Corrections are welcome.
Technically, these operations belong in the ObjectiveC module, where NSObject
is defined. Keep them there. However, we need to build the mock ObjectiveC
overlay with `-disable-objc-attr-requires-foundation-module` now.
...and collapse StaticVar/ClassVar and StaticLet/ClassLet into
StaticProperty/ClassProperty.
"var" and "let" aren't great nouns to use in diagnostics to begin with,
especially alongside semantic terms like "instance method". Focus on
the type vs. non-type aspect instead with "property", which better
matches how people talk about member vars (and lets) anyway.
And add a test that exercises this exit path (although it won't crash
a compiler without my fixes because we do end up with ErrorType in
that case, not a nullptr).
When the operand of a collection upcast is a dictionary literal,
upcast the elements of the collection instead. This avoids going
through the dynamic-casting machinery.
When we form a collection upcast of an array literal, upcast the
individual elements directly so we avoid a call through the
runtime. This both improves code generation and sidesteps a regression
involving the inability to dynamically cast function types.
Fixes SR-7362 / rdar://problem/39218656.
Update error messages to mention the invalid character.
Improve the diagnostic of floating point exponents.
Add tests for error messages when parsing floating point exponents.
Update existing tests for new error messages.
Rephrased error message to indicate which character is unexpected.
Provide error message variations when parsing binary, octal, decimal (default), and hexadecimal integer literals.
Look for unexpected digits in binary and octal integer literals.
Look for unexpected letters in hex integer literals.
Resolves: SR-5236 rdar://problem/32858684