- Have DiagnosticEngine produce "aka" annotations for sugared types.
- Fix the "optional type '@lvalue C?' cannot be used as a boolean; test for '!= nil' instead"
diagnostic to stop printing @lvalue noise.
This addresses:
<rdar://problem/19036351> QoI: Print minimally-desugared 'aka' types like Clang does
Swift SVN r30587
type check the subexpressions of a callexpr more consistently,
always checking the arguments independently (not just if one argument
is inout). This routes around issues handling tuples, and brings more
consistency to the experience. Factor this logic out and use it for
operators and subscripts as well.
Swift SVN r30583
independently (not just if one argument is inout). This routes around issues handling tuples,
and brings more consistency to the experience. Factor this logic out and use it for operators
and subscripts as well.
This improves a small collection of diagnostics, including the infamous:
// Infer incompatible type.
- func6(fn: {a,b->Float in 4.0 }) // expected-error {{cannot convert return expression of type 'Double' to expected return type 'Float'}}
+ func6(fn: {a,b->Float in 4.0 }) // expected-error {{cannot invoke 'func6' with an argument list of type '(fn: (_, _) -> Float)'}}
+ // expected-note @-1 {{expected an argument list of type '(fn: (Int, Int) -> Int)'}}
Swift SVN r30570
diagnose problems inside of them instead of punting on them completely.
This leads to substantially better error messages in many cases, fixing:
<rdar://problem/19870975> Incorrect diagnostic for failed member lookups within closures passed as arguments ("(_) -> _")
<rdar://problem/21883806> Bogus "'_' can only appear in a pattern or on the left side of an assignment" is back
<rdar://problem/20712541> QoI: Int/UInt mismatch produces useless error inside a block
and possibly others. We are not yet capitalizing on available type information we do
have about closure exprs, so there are some cases where we produce
"error: type of expression is ambiguous without more context"
when this isn't strictly true, but this is still a huge step forward.
Swift SVN r30547
with no returns *must* be (), add a defaulting constraint
so that it will be inferred as () in the absence of
other possibilities.
The chief benefit here is that it allows better QoI when
the user simply hasn't yet written the return statement.
Doing this does regress a corner case where an attempt
to recover from an uncalled function leads to the
type-checker inferring a result for a closure that
doesn't make any sense at all.
Swift SVN r30476
fixing:
<rdar://problem/20789423> Unclear diagnostic for multi-statement closure with no return type
<rdar://problem/21829141> BOGUS: unexpected trailing closure
<rdar://problem/21784170> Incongruous `unexpected trailing closure` error in `init` function which is cast and called without trailing closure.
Swift SVN r30443
we can start taking advantage of ambiguously typed subexpressions in CSDiags. We
start by validating the callee function of ApplyExprs, which substantially improves
our abilities to generate precise diagnostics about malformed calls.
This is the minimal introduction of this concept to CSDiags, a lot of refactoring
is yet to come, however, this is enough to resolve:
<rdar://problem/21080030> Bad diagnostic for invalid method call in boolean expression
<rdar://problem/21784170> Incongruous `unexpected trailing closure` error in `init` function which is cast and called without trailing closure.
one of the testcases from:
<rdar://problem/20789423> Unclear diagnostic for multi-statement closure with no return type
and a bunch of other places where we got weird "unexpected trailing closure"
diagnostics that made no sense. As usual, it is two steps forward and one step back,
as this exposed some other weird latent issues like:
<rdar://problem/21900971> QoI: Bogus conversion error in generics case
Swift SVN r30429
return statements, or a return statement with no operand.
Also, fix a special-case diagnostic about converting a return
expression to (1) only apply to converting the actual return
expression, not an arbitrary sub-expression, and (2) use the
actual operand and return types, not the drilled-down types
that caused the failure.
Swift SVN r30420
RebindSelfInConstructorExpr, which gets issues related to
self.init and super.init onto the CallExpr best path, instead
of in the generic overload constraint failure morass.
Swift SVN r30067
argument list for a CallExpr instead of matching a gang of typevartypes against them.
This allows us to produce better matches in some cases.
Swift SVN r30065
facilities used by operators etc. This required a bunch of changes to make
the diagnostics changes strictly an improvement:
- Teach the new path about calls to TypeExprs.
- Teach evaluateCloseness some simple things about varargs.
- Make the generic diagnosis logic produce a better error when there is
exactly one match.
Overall, the resultant diagnostics are a step forward: we now produce candidate
set notes more uniformly, and the messages about some existing ones are
more specific. This is just another stepping stone towards progress though.
Swift SVN r30057
satisfying the request of <rdar://problem/20409366> Diagnostics for init calls should print the class name
I'm keeping that radar open though, because the case in it should get better still.
Swift SVN r30029
- Remove a weird special case for literals from TypeChecker::typeCheckCondition.
- Enhance FailureDiagnosis::getTypeOfIndependentSubExpression to know about situations
where recursive type checks fail (in some nested situation) but still produce a type
for the top level of the expr tree.
- Remove dead code from CSApply now that you can't branch on Builtin.Int1.
The first & second combine to slightly improve one case I've been looking at in
test/expr/expressions.swift.
Swift SVN r29860
expressions. Broadening from callexpr to apply expr (picking up operators) improves
several diagnostics in the testsuite, and is important to avoid regressions from an
upcoming patch.
Swift SVN r29821
This teaches overload constraint diagnosis to look at the resolved anchor
expression that fails (instead of assuming that it is the expr itself) and
walks up the AST to find the applyexpr in question. This allows us to give
much more specific diagnostics for overload resolution failures, and to give
much more specific location information.
Where before my recent patches we used to produce:
t.swift:2:3: error: cannot invoke 'assert' with an argument list of type '(Bool, String)'
assert(a != nil, "ASSERT COMPILATION ERROR")
^
t.swift:2:9: note: expected an argument list of type '(@autoclosure () -> Bool, @autoclosure () -> String, file: StaticString, line: UWord)'
assert(a != nil, "ASSERT COMPILATION ERROR")
^
with this and the other recent patches, we now produce:
t.swift:2:12: error: cannot invoke '!=' with an argument list of type '(Int, nil)'
assert(a != nil, "ASSERT COMPILATION ERROR")
~~^~~~~~
Swift SVN r29792
path associated with them, and to dig the expression the constraint refers to out
of the locator. Also teach simplifyLocator how to simplify closureexpr results out.
This eliminates a class of completely bogus diagnostics where the types reported
don't make any sense, resolving a class of radars like 19821875, where we now
produce excellent diagnostics.
That said, we still pick constraints to report that are unfortunate in some cases,
such as the example in expr/closure/closures.swift.
Swift SVN r29757
- Fix TypeCheckExpr.cpp to be more careful when propagating sugar from an
argument to the result of the function. We don't want to propagate parens,
because they show up in diagnostics later.
- Restructure FailureDiagnosis::diagnoseFailure() to strictly process the tree
in depth first order. Before it would only do this if contextual typing was
unavailable, leading to unpredictable inconsistencies between diagnostics.
- Always perform diagnoseContextualConversionError early, as part of the thing
that calls the visitor, instead of in each visit method. This may change in
the future, but is a simplification for now.
- Make the operator processing code handle the "candidate is an exact match"
case by emitting a diagnostic indicating that the result type of the operator
must not match expectations, instead of emitting the silly things like
"binary operator '&' cannot be applied to two Int operands" which is obviously
false.
These changes lead to minor improvements across the testsuite, and should make the
diagnostics more predictable for more complex real-world ones, but I haven't gone
through the radars yet.
Major missing pieces:
- CallExpr isn't using the same logic that the operators are.
- When you have a near match (only one argument mismatches) we should specifically
complain about that argument, instead of spewing an entire argument list.
- The noescape function attr diagnostic is being emitted twice now.
Swift SVN r29733
win from this other than simplification. Some minor wins are that we handle varargs
better and don't get extraneous ()'s in types in some cases.
Swift SVN r29729
them with diagnoseGeneralFailure() which would miss out on the common cases
where the subexpr of the ParenExpr is the issue.
For example, before we would produce:
t.swift:8:8: error: could not find an overload for '&' that accepts the supplied arguments
if !(x & 4.0) {}
~~~^~~~~~
now we produce:
t.swift:8:6: error: binary operator '&' cannot be applied to operands of type 'Int' and 'Double'
if !(x & 4.0) {}
^
t.swift:8:6: note: overloads for '&' exist with these partially matching parameter lists: (Int, Int)
if !(x & 4.0) {}
^
also, remove some special handling for lvalues and inout from overload
diagnostics, which can't matter anymore.
Swift SVN r29661
When a line begins with '.', it's almost always due to a method chain, not an attempt to start an expression with a contextual member lookup. This is a more principled grammar rule than the long tail of hacks we've been putting up to try to accommodate "builder pattern" usages. Fixes rdar://problem/20238557.
Swift SVN r29606
- If the closure being rewritten was nested inside of another
closure, we would rewrite the nested closure into a new closure
having cs.DC as its parent, rather than the DeclContext of the
outer closure as required.
- If the closure being rewritten had nested closures, the parent
DeclContext of the nested closures was set to the old closure,
not the new one.
Fix both problems by having coerceClosureExprToVoid() modify the
closure in place instead of creating a new closure.
Fixes <rdar://problem/20931915>.
Swift SVN r29563
init()'s implicitly evaluate the initial values for properties, and we aren't modeling
that correctly in the AST. This prevented the closure checker from noticing these
accesses, leading to SILGen crashing later. In the absence of proper AST modeling of
this, add special case handling for them.
Swift SVN r29508
The case where this comes up is when people name their app and framework
targets the same thing, or when they've renamed their test target module
in an attempt to avoid issues with NSClassFromString and differing
runtime names. We currently do various wrong things when this happens,
so just emit an error instead.
I left a hole for our overlays, which use '@exported import <the-current-module>'
to get at their Clang modules. The previous commit means this can be
replaced by -import-underlying-module, but that doesn't help our tests,
which use -enable-source-import for their overlays. Which we should stop doing.
rdar://problem/21254367
Swift SVN r29440
This makes it clearer that expressions like "foo.myType.init()" are creating new objects, instead of invoking a weird-looking method. The last part of rdar://problem/21375845.
Swift SVN r29375
If 'x.init' appears as a member reference other than 'self.init' or 'super.init' within an initializer, treat it as a regular static member lookup for 'init' members. This allows a more explicit syntax for dynamic initializations; 'self.someMetatype()' looks too much like it's invoking a method. It also allows for partial applications of initializers using 'someMetatype.init' (though this needs some SILGen fixes, coming up next). While we're in the neighborhood, do some other correctness and QoI fixes:
- Only lookup initializers as members of metatypes, not instances, and add a fixit (instead of crashing) to insert '.dynamicType' if the initializer is found on an instance.
- Make it so that constructing a class-constrained archetype type correctly requires a 'required' or protocol initializer.
- Warn on unused initializer results. This seems to me like just the right thing to do, but is also a small guard against the fact that 'self.init' is now valid in a static method, but produces a newly-constructed value instead of delegating initialization (and evaluating to void).
Swift SVN r29344
Instead of forcing full application of '{super,self}.init' in the parser, and installing the RebindSelf semantic expr node early, make these constraints to Sema-time checks, and parse '<expr>.init' as a regular postfix production. This is a better separation of concerns, and also opens the door to supporting 'metatype.init()' in more general expression contexts (though that part still needs some follow-up sema work).
Swift SVN r29343
If P is a protocol, calling static methods or constructors
via values of type P.Protocol makes no sense, so let's prohibit
this.
Fixes <rdar://problem/21176676>.
Swift SVN r29338
Special-casing these as MemberRefExprs created an asymmetry
where unbound archetype instance methods (<T : P> T.f) could
not be represented. Treating class and protocol methods
uniformly also eliminates a handful of special cases around
MemberRefExpr.
SILGen's RValue and call emission peepholes now have to know
about DeclRefExprs that point to protocol methods.
Finally, generalize the diagnostic for partially applied
mutating methods to any partially applied function with an
inout parameter, since this is not supported.
Fixes <rdar://problem/20564672>.
Swift SVN r29298
result in slightly more descriptive diagnostics in some cases. (Specifically,
for diagnostics involving binary operators.)
(rdar://problem/21080030)
Swift SVN r29020
that make vardecls and subscripts immutable. This makes the indirect cases
a lot more specific ("this is a get-only property" instead of "this is
immutable") and allows us to consolidate a bunch of code:
2 files changed, 45 insertions(+), 119 deletions(-)
Swift SVN r28954
which tell you what the problem is, not just that you have one.
- Enhance diagnostics to be more specific about function calls producing
rvalues.
Swift SVN r28939
We no do not require "self." for closures capturing self in static/class methods.
While we do actually capture the metatype more than we should (rdar://21030087),
this doesn't matter to the developer, since this capture cannot cause a cycle
in the reference graph that they should have to reason about.
Swift SVN r28804
This sets the location of the implicit closure decls (like $0) to being the location
of the { in a ClosureExpr, instead of the location of the first use. The capture tracker
uses source location information of the decl and the DeclRefExpr to determine if the
referenced value was captured too early, which is what is causing this incorrect error.
Swift SVN r28802
Properly implementing a class whose methods capture variables
defined in the outer scope requires adding the captures as
hidden vars in the class and initializers, and seems
non-trivial.
Just diagnose this case for now instead of crashing.
Fixes <rdar://problem/20853958>.
Swift SVN r28481
<rdar://problem/15975935> warning that you can use 'let' not 'var'
<rdar://problem/18876585> Compiler should warn me if I set a parameter as 'var' but never modify it
<rdar://problem/17224539> QoI: warn about unused variables
This uses a simple pass in MiscDiagnostics that walks the body of an
AbstractFunctionDecl. This means that it doesn't warn about unused properties (etc),
but it captures a vast majority of the cases.
It also does not warn about unused parameters (as a policy decision) because it is too noisy,
there are a variety of other refinements that could be done as well, thoughts welcome.
Swift SVN r28412
Local functions may reference each other as long as they don't transitively capture any vars or other non-function local decls before their declaration.
Swift SVN r28394