This already can't happen in most circumstances because of trailing closures, but we didn't explicitly disallow it at the beginning of a BraceStmt or following a statement production. Fixes the parser part of rdar://problem/17850752 (though there's a type checker bug there too).
Swift SVN r21663
A tuple of lvalues behaves semantically like an lvalue, so for consistency with scalar lvalues, we should diagnose ignored lvalue tuples in offline code, or coerce them to rvalues in REPL or playground contexts, because these contexts really expect rvalues for presentation purposes. Fixes rdar://problem/17057039.
Swift SVN r21549
This allows UnicodeScalars to be constructed from an integer, rather
then from a string. Not only this avoids an unnecessary memory
allocation (!) when creating a UnicodeScalar, this also allows the
compiler to statically check that the string contains a single scalar
value (in the same way the compiler checks that Character contains only
a single extended grapheme cluster).
rdar://17966622
Swift SVN r21198
reserve ? itself as a special token that cannot be defined (protecting ternary, postfix ?,
etc) but add some defensive code to prevent people from defining those operators.
<rdar://problem/17923322> allow ? as a general operator character
Swift SVN r21051
A checked cast such as "x as String" or "x as? [String]", where x is of
class or Objective-C existential type, is now handled as a normal
checked cast rather than a Sema-generated call to the corresponding
witness. This eliminates a pile of hairy code from constraint
application and takes a step toward <rdar://problem/17408934>.
The part of the switch_objc.swift test I removed wasn't testing
anything useful; that's what <rdar://problem/17408934> is about.
Swift SVN r20970
The _forceBridgeFromObjectiveC and _conditionallyBridgeFromObjectiveC
requirements of the _ObjectiveCBridgeable protocol previously returned
Self and Self?, respectively, where 'Self' is the value type that is
bridged. This use of returns is fairly hostile to the idea of calling
the witnesses for these requirements from the C++ part of the runtime,
leading to "interesting" tricks with OpaqueExistentialContainer that
made it hard to use these witnesses within the dynamic casting
infrastructure.
Replace the returns with inout Self? parameters, which are far easier
to deal with in the C++ part of the runtime. Despite the churn because
we're changing the _ObjectiveCBridgeable protocol, this is NFC.
Swift SVN r20934
This is essentially NFC, but the protocols we were calling into are
changing in a way that makes it hard to use the witnesses directly
from the type checker.
Swift SVN r20933
Start capitalizing on some of the new diagnostic machinery in a few different ways:
- When mining constraints for type information, utilize constraints "favored" by the overload resolution process.
- When printing type variables, if the variable was created by opening a literal expression, utilize the literal
default type or conformance if possible.
- Utilize syntactic information when crafting diagnostics:
- If the constraint miner can produce a better diagnostic than the recorded failure, diagnose via constraints.
- Factor in the expression kind when choosing which types to include in a diagnostic message.
- Start customizing diagnostics based on the amount of type data available.
What does all this mean?
- Fewer type variables leaking into diagnostic messages.
- Far better diagnostics for overload resolution failures. Specifically, we now print proper argument type data
for failed function calls.
- No more "'Foo' is not convertible to 'Foo'" error messages
- A greater emphasis on type data means less dependence on the ordering of failed constraints. This means fewer
inscrutable diagnostics complaining about 'UInt8' when all the constituent expressions are of type Float.
So we still have a ways to go, but these changes should greatly improve the number of head-scratchers served up
by the type checker.
These changes address the following radars:
rdar://problem/17618403
rdar://problem/17559042
rdar://problem/17007456
rdar://problem/17559042
rdar://problem/17590992
rdar://problem/17646988
rdar://problem/16979859
rdar://problem/16922560
rdar://problem/17144902
rdar://problem/16616948
rdar://problem/16756363
rdar://problem/16338509
Swift SVN r20927
Squash _[Conditionally]BridgedToObjectiveC into one protocol. This
change results in simpler bridging code with fewer dynamic protocol
conformance checks, and solves the nasty naming/semantics problem that
resulted from having _ConditionallyBridgedToObjectiveC refining
_BridgedToObjectiveC.
Also, rename things so they're more symmetrical and less confusing.
Swift SVN r20664
To limit user confusion when using conditional expressions of type Bool?, we've decided to remove the BooleanType (aka "LogicValue") conformance from optional types. (If users would like to use an expression of type Bool? as a conditional, they'll need to check against nil.)
Note: This change effectively regresses the "case is" pattern over types, since it currently demands a BooleanType conformance. I've filed rdar://problem/17791533 to track reinstating it if necessary.
Swift SVN r20637
Change the lexing of '?' to be similar to '!', where we special-case the postfix case for the intrinsic postfix optional operator, but fall back to lexing as an operator when it isn't left-bound. For now, only accept '??' as an operator name--we could easily generalize this, but that warrants discussion first.
Swift SVN r20591
Modify TypeBase::getRValueType to structurally convert lvalues embedded in tuple and paren types. Inside the constraint solver, coerce types to rvalues based on the structural 'isLValueType' test rather than shallow 'is<LValueType>' checking. Fixes <rdar://problem/17507421>, but exposes an issue with call argument matching and lvalues <rdar://problem/17786730>.
Swift SVN r20442
enforce its own little constraints. The type checker isn't using it for
anything, and it is just clutter.
This resolves <rdar://problem/16656024> Remove @assignment from operator implementations
Swift SVN r19960
modifiers and with the func implementations of the operators. This resolves the rest of:
<rdar://problem/17527000> change operator declarations from "operator prefix" to "prefix operator" & make operator a keyword
Swift SVN r19931
eliminating the @'s from them when used on func's. This is progress towards
<rdar://problem/17527000> change operator declarations from "operator prefix" to "prefix operator" & make operator a keyword
This also consolidates rejection of custom operator definitions into one
place and makes it consistent, and adds postfix "?" to the list of rejected
operators.
This also changes the demangler to demangle weak/inout/postfix and related things
without the @.
Swift SVN r19929
This only tackles the protocol case (<rdar://problem/17510790>); it
does not yet generalize to an arbitrary "class" requirement on either
existentials or generics.
Swift SVN r19896
Mechanically add "Type" to the end of any protocol names that don't end
in "Type," "ible," or "able." Also, drop "Type" from the end of any
associated type names, except for those of the *LiteralConvertible
protocols.
There are obvious improvements to make in some of these names, which can
be handled with separate commits.
Fixes <rdar://problem/17165920> Protocols `Integer` etc should get
uglier names.
Swift SVN r19883
expression applications
(rdar://problem/15933674, rdar://problem/17365394 and many, many dupes.)
When solving for the type of a binOp expression, factor the operand expression
types into account when collating overloads for the operator being applied.
This allows the type checker to now infer types for some binary operations with
hundreds of nested components, whereas previously we could only handle a handful.
(E.g., "1+2+3+4+5+6" previously sent the compiler into a tailspin.)
Specifically, if one of the operands is a literal, favor operator overloads
whose operand, result or contextual types are the default type of the literal
convertible conformance of the the argument literal type.
By doing so we can prevent exponential behavior in the solver and massively
reduce the complexity of many commonly found constraint systems. At the same
time, we'll still defer to "better" overloads if the default one cannot be
applied. (When adding an Int8 to an Int, for example.)
This obviously doesn't solve all of our performance problems (there are more
changes coming), but there are couple of nice side-effects:
- By tracking literal/convertible protocol conformance info within type
variables, I can potentially eliminate many instances of "$T0" and the
like from our diagnostics.
- Favored constraints are placed at the front of the overload resolution
disjunction, so if a system fails to produce a solution they'll be the
first to be mined for a cause. This helps preserve user intent, and leads
to better diagnostics being produced in some cases.
Swift SVN r19848
attribute is a "modifier" of a decl, not an "attribute" and thus shouldn't
be spelt with an @ sign. Teach the parser to parse "@foo" but reject it with
a nice diagnostic and a fixit if "foo" is a decl modifier.
Move 'dynamic' over to this (since it simplifies some code), and switch the
@optional and @required attributes to be declmodifiers (eliminating their @'s).
Swift SVN r19787
Introduce the new BooleanLiteralConvertible protocol for Boolean
literals. Take "true" and "false" as real keywords (which is most of the
reason for the testsuite churn). Make Bool BooleanLiteralConvertible
and the default Boolean literal type, and ObjCBool
BooleanLiteralConvertible. Fixes <rdar://problem/17405310> and the
recent regression that made ObjCBool not work with true/false.
Swift SVN r19728
This change pulls the handling of the element pattern and sequence of
a for-each loop into a single constraint system, so that we get type
inference between the two. Among other things, this allows one to
infer generic arguments within the element pattern from the sequence's
element type as well as allowing type annotations or the form of the
element pattern to affect overload resolution and generic argument
deduction for the sequence itself.
Swift SVN r19721
Previously, bridged value types and their corresponding Objective-C
classes allow inter-conversion via a number of user-defined conversion
functions in the Foundation module. Instead, make this a general
feature of the type checker so we can reason about it more
directly. Fixes <rdar://problem/16956098> and
<rdar://problem/17134986>, and eliminates 11 (half) of the
__conversion functions from the standard library and overlays.
A few notes:
- The XCTest changes are because a String can no longer directly
conform to CVarArg: this is a Good Thing (TM), because it should be
ambiguous: did you mean to pass it as an NSString or a C string?
- The Objective-C representations for the bridged collections are
hard-coded in the type checker. This is unfortunate and can be
remedied by adding another associated type to the
_BridgedToObjectiveC protocol.
Swift SVN r19618
If the lookup was resolved by optional unwrapping, unwrap the metatype when we apply the solution so we don't try to create an invalid metatype conversion from T?.Type to T.Type. Fixes <rdar://problem/17542185>.
Swift SVN r19500
When we see a '.member' expression in optional context, look for the member in the optional's object type if it isn't found in Optional itself. <rdar://problem/16125392>
Swift SVN r19469
This consolidates the \x, \u, and \U escape sequences into one \u{abc} escape sequence.
For now we still parse and cleanly reject the old forms with a nice error message, this
will eventually be removed in a later beta (tracked by rdar://17527814)
Swift SVN r19435
We haven't been advertising this syntax much, and it's closure form
was completely broken anyway, so don't jump through hoops to provide
great Fix-Its here.
Swift SVN r19277