We weren't picking up all occurrences of 'x' in the cases like the below:
case .first(let x), .second(let x):
print("foo \(x)")
fallthrough
case .third(let x):
print("bar \(x)")
We would previously only return occurrences within the case statement the query
was made in (ignoring fallthroughs) and for cases with multiple patterns (as in
the first case above) we would only return the occurrence in the first pattern.
...and remove the option. This is ~technically~ CLI-breaking because
Swift 5 shipped this as a hidden driver option, but it wouldn't have
/done/ anything in Swift 5, so I think it's okay to remove.
Note that if a parseable interface (.swiftinterface) and a binary
interface (.swiftmodule) are both present, the binary one will still
be preferred. This just /allows/ parseable interfaces to be used.
rdar://problem/36885834
The client usually cares about a subset of all expressions. A way to differentiate
them is by the protocols these expressions' types conform to. This patch allows
the request to add a list of protocol USRs so that the response only includes those
interested expressions that conform to any of the input protocols.
We also add a field to the response for each expression type to indicate the
conforming protocols names that were originally in the input list.
When an empty list of protocol USRs are given, we report all expressions' types
in the file like the old behavior.
rdar://35199889
This avoids us having to pattern match every source file which should
help speed up the CMake generation. A secondary optimization is
possible with CMake 3.14 which has the ability to remove the last
extension component without having to resort to regular expressions. It
also helps easily identify the GYB'ed sources.
This custom buffer encapsulates the memory layout details of the response
for the expression type request. From the client side, each expression type
is represented as a tuple of {expr_offset, expr_length, printed_type}.
rdar://35199889
Members of an @objcMembers context previous had implicit @objc attributes, but
now don't (possibly because of the request evaluator changes?). This updates the
output of sourcekitd's 'index' request to act as if they still had implicit
@objc attributes on them for compatibility.
Resolves rdar://problem/48140265
This request collects the types of all expressions in a source file after type checking.
To fulfill this task, the client must provide the path to the Swift source file under
type checking and the necessary compiler arguments to help resolve all dependencies.
Request:
{
<key.request>: (UID) <source.request.expression.type>,
<key.sourcefile>: (string) // Absolute path to the file.
<key.compilerargs>: [string*] // Array of zero or more strings for the compiler arguments,
// e.g ["-sdk", "/path/to/sdk"]. If key.sourcefile is provided,
// these must include the path to that file.
}
Response:
{
<key.printedtypebuffer>: (string) // A text buffer where all expression types are printed to.
<key.expression_type_list>: (array) [expr-type-info*] // A list of expression and type
}
expr-type-info ::=
{
<key.expression_offset>: (int64) // Offset of an expression in the source file
<key.expression_length>: (int64) // Length of an expression in the source file
<key.type_offset>: (int64) // Offset of the printed type of the expression in the printed type buffer
<key.type_length>: (int64) // Length of the printed type of the expression in the printed type buffer
}
rdar:://35199889
In addition to capturing more detailed preprocessor info, the
DetailedPreprocessorRecord option sets the clang module format to 'raw'
rather than the default 'object'. Sourcekitd doesn't link the code
generation libs, which it looks like the default 'object' format requires,
so it sets this option to true. The subinvocation generated when loading a
module from a .swiftinterface file still used the default prior to this
change though, so it would end up crashing sourcekitd.
This change sets the DetailedProccessorRecord option if the DetailedRecord
option is set on the preprocessor options of parent context's clang module
loader. This fixes interface generation crashing for modules that only have
a .swiftinterface file.
rdar://problem/43906499
`source.request.conformingmethods` is a new SourceKit request which
receives a source position and a list of protocol namses, returns a list
of methods whose return type conforms to the requested protocols.
rdar://problem/44699573
SourceKit document structure request used to crash if if there's inititalizer
with single named parameter with `@IBAction` attribute.
This used to happen because
ConstructorDecl::isObjCZeroParameterWithLongSelector() requires
interface type of the parameter but the constructor doesn't have it at
this stage.
This change fixes that by not vending ObjC name for
constructor or destructors.
rdar://problem/47426948
This is a new SourceKit request which receives a position in the source
file, returns possible expected types and their members which can be
referenced by "implicit member expression" syntax.
Instead of creating syntax nodes directly, modify the parser to invoke an abstract interface 'SyntaxParseActions' while it is parsing the source code.
This decouples the act of parsing from the act of forming a syntax tree representation.
'SyntaxTreeCreator' is an implementation of SyntaxParseActions that handles the logic of creating a syntax tree.
To enforce the layering separation of parsing and syntax tree creation, a static library swiftSyntaxParse is introduced to compose the two.
This decoupling is important for introducing a syntax parser library for SwiftSyntax to directly access parsing.
Redesigns the `SwiftLang.parse` API to accommodate a format parameter which can be used to request a ByteTree-serialized syntax tree instead of JSON-serialized. This gives us a convenient way to use the fastest currently available combination of tools for parsing a file into a syntax tree.
The new API only accepts paths, not source buffers, and returns JSON as `Data` instead of `String`, which are both better directions in the long run. The format type is extensible so that it can easily be extended to support "direct" parsing into a SyntaxSourceFile.
Deprecated wrapper methods with the old names and signatures are still available for any existing clients.
With this change, you will no longer receive
"error when parsing the compiler arguments". Instead, you will
receive the underlying error, like
"error: unable to load output file map 'output_file_map.json': No such file or directory"
`-fblocks` is a core driver option now, so it can be used with both the GCC
style driver as well as the cl style driver. Simplify the logic for the
handling of this option.