Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
Flush it and the early validation hack now that we can delay computing the underlying interface type on demand and have taught type resolution to honor the structural type of a typealias.
This changes the way requirement signatures are spelled as a side effect.
If we see `MyModule.Type`, the parser thinks this is a metatype type.
Escape the name `Type` so the parser can recognize it's a type name.
Fixes [SR-11422](https://bugs.swift.org/browse/SR-11422) rdar://55094784
Note that in all cases it was either nullptr or ctx.getLazyResolver().
While passing in nullptr might appear at first glance to mean something
("don't type check anything"), in practice we would check for a nullptr
value and pull out ctx.getLazyResolver() instead. Furthermore, with
the lazy resolver going away (at least for resolveDeclSignature() calls),
it won't make sense to do that anymore anyway.
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances in the swift repo.
This has been an unnecessary code path for a long time now and should be removed particularly because it triggers wasteful `stat` calls.
rdar://51523161
Ensure the various entity walkers handle the implicit subscript
reference correctly (usually by ignoring it) and fall through to the
underlying declarations.
rdar://49028895
When building the implicit subscript expression, set the "implicit" bit
correctly and pass it through in the indexer so that we get implicit
refernces to the subscript. This would be useful for e.g. searching for
all uses of the dynamic subscript.
...in preparation for me adding a third kind of import, making the
existing "All" kind a problem. NFC, except that I did rewrite the
ClangModuleUnit implementation of getImportedModules to be simpler!
Address the TODO in the build and unify the libxml2 handling with
LLVM/clang. Use the information now and propagate this into the lit
configuration so that tests can be made aware of libxml2 status.
...and remove the option. This is ~technically~ CLI-breaking because
Swift 5 shipped this as a hidden driver option, but it wouldn't have
/done/ anything in Swift 5, so I think it's okay to remove.
Note that if a parseable interface (.swiftinterface) and a binary
interface (.swiftmodule) are both present, the binary one will still
be preferred. This just /allows/ parseable interfaces to be used.
rdar://problem/36885834
The client usually cares about a subset of all expressions. A way to differentiate
them is by the protocols these expressions' types conform to. This patch allows
the request to add a list of protocol USRs so that the response only includes those
interested expressions that conform to any of the input protocols.
We also add a field to the response for each expression type to indicate the
conforming protocols names that were originally in the input list.
When an empty list of protocol USRs are given, we report all expressions' types
in the file like the old behavior.
rdar://35199889
"Fixes" <rdar://problem/30680565> -- the "reconstruct_type_from_mangled_name_invalid"
test has been disabled since 2017, and the output has changed a fair bit. But the
FIXMEs have been addressed and it can reconstruct the associated type and
type alias now, and there's no harm in re-enabling it now.
This is libIDE side implementation for collecting all type information in a source
file. When several expression share the same source range, we always report the
type of the outermost expression.
rdar://35199889
We were checking the parent invocation's DiagnosticEnginer rather than the
subinstance's to determine if there were any errors building the module, which
meant we would fail to load the module if there were errors prior to the import
statement in the importing file.
This also meant code completion would fail to load the module, because it always
emits a bogus error in order to mark the AST as erroneous so that different
parts of the compiler (e.g. the verifier) have less strict assumptions.
rdar://problem/43906499
`source.request.conformingmethods` is a new SourceKit request which
receives a source position and a list of protocol namses, returns a list
of methods whose return type conforms to the requested protocols.
rdar://problem/44699573
We were checking the parent invocation's DiagnosticEnginer rather than the
subinstance's to determine if there were any errors building the module, which
meant we would fail to load the module if there were errors prior to the import
statement in the importing file.
This also meant code completion would fail to load the module, because it always
emits a bogus error in order to mark the AST as erroneous so that different
parts of the compiler (e.g. the verifier) have less strict assumptions.
rdar://problem/43906499
There was only one remaining usage other than in testing tools.
Note that when a declaration mangling was passed in, the old entry
point would (try to) return the type of the declaration.
The new entry point no longer has this behavior. I changed the
bridging-header-first test to run lldb-moduleimport-test with
-decl-from-mangled instead of -type-from-mangled-old to preserve
the behavior of the test.
Also, I removed test/DebugInfo/DumpTypeFromMangledName.swift
completely. This test only covered a handful of cases, and a bunch
of them were declaration manglings rather than type manglings.
The new tests in test/TypeDecoder/ are much more comprehensive.
TypeContextInfo is for new SourceKit request which receives source
location, and returns context type and members which can be referenced
by "implicit member expression" syntax.
Implement that as a code completion callbacks.
Rather than using the `LINK_LIBRARIES` option, use target_link_libraries
like clang does. Because these are all host tools, there is no name
mangling done for the libraries making this a no-op change.
Remove the unncessary link against the DebugInfoCodeView component. THe tools
seem to build without the dependency. The dependency issue in the linkage
seems to have been resolved.
Module references get indexed as a 'module' symbol; they get USRs similar to how clang would assign a USR for a module reference.
JIRA: https://bugs.swift.org/browse/SR-8677