* Fix reflection_Optional_Any to support non-Apple platforms
Apple and non-Apple platforms happen to use different number
of extra inhabitants in 64-bit pointers. This is already
supported by the test framework, we just need to fill it in
properly for this one test.
* Remove OS= restriction
This code rearchitects and simplifies the projectEnumValue support by
introducing a new `TypeInfo` subclass for each kind of enum, including trivial,
no-payload, single-payload, and three different classes for multi-payload enums:
* "UnsupportedEnum" that we don't understand. This returns "don't know" answers for all requests in cases where the runtime lacks enough information to accurately handle a particular enum.
* MP Enums that only use a separate tag value. This includes generic enums and other dynamic layouts, as well as enums whose payloads have no spare bits.
* MP Enums that use spare bits, possibly in addition to a separate tag. This logic can only be used, of course, if we can in fact compute a spare bit mask that agrees with the compiler.
The final challenge is to choose one of the above three handlings for every MPE. Currently, we do not have an accurate source of information for the spare bit mask, so we never choose the third option above. We use the second option for dynamic MPE layouts (including generics) and the first for everything else.
TODO: Once we can arrange for the compiler to expose spare bit mask data, we'll be able to use that to drive more MPE cases.
* First part of multi-payload enum support
This handles multi-payload enums with fixed
layouts that don't use spare payload bits.
It includes XI calculations that allow us to
handle single-payload enums where the payload
ultimately includes a multi-payload enum
(For example, on 32-bit platforms, String uses
a multi-payload enum, so this now supports single-payload
enums carrying Strings.)
* Use in_guaranteed for let captures
With this all let values will be captured with in_guaranteed convention
by the closure. Following are the main changes :
SILGen changes:
- A new CaptureKind::Immutable is introduced, to capture let values as in_guaranteed.
- SILGen of in_guaranteed capture had to be fixed.
in_guaranteed captures as per convention are consumed by the closure. And so SILGen should not generate a destroy_addr for an in_guaranteed capture.
But LetValueInitialization can push Dealloc and Release states of the captured arg in the Cleanup stack, and there is no way to access the CleanupHandle and disable the emission of destroy_addr while emitting the captures in SILGenFunction::emitCaptures.
So we now create, temporary allocation of the in_guaranteed capture iduring SILGenFunction::emitCaptures without emitting destroy_addr for it.
SILOptimizer changes:
- Handle in_guaranteed in CopyForwarding.
- Adjust dealloc_stack of in_guaranteed capture to occur after destroy_addr for on_stack closures in ClosureLifetimeFixup.
IRGen changes :
- Since HeapLayout can be non-fixed now, make sure emitSize is used conditionally
- Don't consider ClassPointerSource kind parameter type for fulfillments while generating code for partial apply forwarder.
The TypeMetadata of ClassPointSource kind sources are not populated in HeapLayout's NecessaryBindings. If we have a generic parameter on the HeapLayout which can be fulfilled by a ClassPointerSource, its TypeMetaData will not be found while constructing the dtor function of the HeapLayout.
So it is important to skip considering sources of ClassPointerSource kind, so that TypeMetadata of a dependent generic parameters gets populated in HeapLayout's NecessaryBindings.
Teach RemoteMirror how to project enum values
This adds two new functions to the SwiftRemoteMirror
facility that support inspecting enum values.
Currently, these support non-payload enums and
single-payload enums, including nested enums and
payloads with struct, tuple, and reference payloads.
In particular, it handles nested `Optional` types.
TODO: Multi-payload enums use different strategies for
encoding the cases that aren't yet supported by this
code.
Note: This relies on information from dataLayoutQuery
to correctly decode invalid pointer values that are used
to encode enums. Existing clients will need to augment
their DLQ functions before using these new APIs.
Resolves rdar://59961527
```
/// Projects the value of an enum.
///
/// Takes the address and typeref for an enum and determines the
/// index of the currently-selected case within the enum.
///
/// Returns true iff the enum case could be successfully determined.
/// In particular, note that this code may fail for valid in-memory data
/// if the compiler is using a strategy we do not yet understand.
SWIFT_REMOTE_MIRROR_LINKAGE
int swift_reflection_projectEnumValue(SwiftReflectionContextRef ContextRef,
swift_addr_t EnumAddress,
swift_typeref_t EnumTypeRef,
uint64_t *CaseIndex);
/// Finds information about a particular enum case.
///
/// Given an enum typeref and index of a case, returns:
/// * Typeref of the associated payload or zero if there is no payload
/// * Name of the case if known.
///
/// The Name points to a freshly-allocated C string on the heap. You
/// are responsible for freeing the string (via `free()`) when you are finished.
SWIFT_REMOTE_MIRROR_LINKAGE
int swift_reflection_getEnumCaseTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t EnumTypeRef,
unsigned CaseIndex,
char **CaseName,
swift_typeref_t *PayloadTypeRef);
```
Co-authored-by: Mike Ash <mikeash@apple.com>
Swift CI tests backward deployment on different host OSes, so this should be covered in
testing. The explicit target doesn't work well with `executable_test` since it leads to
binaries with too-new minimum deployment targets getting executed on older host OSes.
Lazy loading checked if the ClangDecl was hidden, but loading all
members did not. Let's make loadAllMembers() behave like the lazy
path, and fix some of the mock SDKs in the test suite.
To allow more pervasive use of TypeRefs in LLDB, we need a way to build mangled
names from TypeRef pointers to allow round-tripping between TypeRefs and AST
types. The goal is to experiment with making lldb::CompilerType backed by
TypeRefs instead of AST types.
<rdar://problem/55412775>
The RemoteMirror library in shipping versions of macOS/iOS/tvOS/watchOS crashes if the compiler
emits a BuiltinTypeDescriptor with size zero. Although this is fixed in top-of-tree RemoteMirror,
we want binaries built with the new compiler to still be inspectable when run on older OSes.
Generate the metadata as an empty struct with no fields when deploying back to these older
platforms, which should be functionally equivalent for most purposes.
Fixes rdar://problem/57924984.
In particular, this fixes the size calculation for nested enums,
specifically enums within Optionals. Without this, the
reflection library computes `v` below as requiring two bytes
instead of one.
```
enum E {
case a
case b
}
let v = Optional<E>
```
This also adds a number of test cases for enums alone and
wrapped in optionals, including:
* Zero-case enums are allocated zero size and have zero extra inhabitants
* Zero-case enums in optionals also get zero size
* One-case no-payload enums are allocated zero size and have zero extra inhabitants
* One-case no-payload enums in optionals get one byte allocated and have zero extra inhabitants
* 254-case enums have only two extra inhabitants, so putting them in thrice-nested optionals requires an extra byte
* Various cases where each nested optional gets an extra byte
Resolves rdar://31154770
If a Mach-O image got emitted in just the wrong way, the range of `__TEXT,__swift*` sections to
read could end up starting at an unaligned address (because things like type refs have only one
byte alignment), and this would cause the reflection context to read an unaligned chunk of the
remote memory, causing alignment errors when addresses are mapped to the local copy. Keep the ranges
at least 8-byte-aligned to stave off the alignment issues we might run into with any metadata
structures, which are generally at most pointer aligned. Fixes rdar://problem/54556791
This was failing alongside inherits_ObjCClasses.swift (they were failing at the
same time).
Until MikeA has time to look at this disable this as well.
rdar://problem/50898688
In anticipation of potential future HW features, e.g. armv8.5 memory
tagging, only use the high 4 bytes as discriminator bits in
_BridgeObject rather than the top 8 bits. Utilize two perf flags to
cover this instead. This requires shifting around a fair amount of
internal complexity.
Implements SE-0229.
Also updates simd module types in the Apple SDKs to use the new types, and updates a couple tests to work with the new types and protocols.
We now have plenty of extra inhabitants in the variant enum, so we can get rid of the 7-bit hack.
It’d also be possible now to increase small string capacity to a spacious 11 bytes; however this needs a full overhaul of the 32-bit representation, so it needs a little bit more time in the oven.
Previously, they would forward their unused spare bits to be used by other multi-payload enums, but
did not implement anything for single-payload extra inhabitants.
The standard library never ended up needing the low extra inhabitants (<4G on 64-bit Darwin,
<4K elsewhere), so BridgeObject can have the same set of extra inhabitants as the other refcounted
types, allowing `String?????` and `Array??????????` to still use optimized representations.
rdar://problem/45881464
Bitwise takability is now part of the layout of a type, because
non-bitwise takable types are never stored inline in an
existential or resilient global's buffer, even if they would
fit.
The basic rule is that weak references, unknown-refcounted
unowned references, and aggregates that contain them, are not
bitwise takable, whereas everything else is bitwise takable.
Also, since the bitwise takable for an unowned reference
depends on the reference counting style, we have to record the
superclass of a protocol, if any, to correctly determine the
reference counting style of the protocol existential.