As the optimizer uses more and more AST stuff, it's now time to create an "AST" module.
Initially it defines following AST datastructures:
* declarations: `Decl` + derived classes
* `Conformance`
* `SubstitutionMap`
* `Type` and `CanonicalType`
Some of those were already defined in the SIL module and are now moved to the AST module.
This change also cleans up a few things:
* proper definition of `NominalTypeDecl`-related APIs in `SIL.Type`
* rename `ProtocolConformance` to `Conformance`
* use `AST.Type`/`AST.CanonicalType` instead of `BridgedASTType` in SIL and the Optimizer
MandatoryPerformanceOptimizations already did most of the vtable specialization work.
So it makes sense to remove the VTableSpecializerPass completely and do everything in MandatoryPerformanceOptimizations.
* add missing APIs
* bridge the entries as values and not as pointers
* add lookup functions in `Context`
* make WitnessTable.Entry.Kind enum cases lower case
Make SILLInkage available in SIL as `SIL.Linkage`.
Also, rename the misleading Function and GlobalVariable ABI `isAvailableExternally` to `isDefinedExternally`
The main changes are:
*) Rewrite everything in swift. So far, parts of memory-behavior analysis were already implemented in swift. Now everything is done in swift and lives in `AliasAnalysis.swift`. This is a big code simplification.
*) Support many more instructions in the memory-behavior analysis - especially OSSA instructions, like `begin_borrow`, `end_borrow`, `store_borrow`, `load_borrow`. The computation of end_borrow effects is now much more precise. Also, partial_apply is now handled more precisely.
*) Simplify and reduce type-based alias analysis (TBAA). The complexity of the old TBAA comes from old days where the language and SIL didn't have strict aliasing and exclusivity rules (e.g. for inout arguments). Now TBAA is only needed for code using unsafe pointers. The new TBAA handles this - and not more. Note that TBAA for classes is already done in `AccessBase.isDistinct`.
*) Handle aliasing in `begin_access [modify]` scopes. We already supported truly immutable scopes like `begin_access [read]` or `ref_element_addr [immutable]`. For `begin_access [modify]` we know that there are no other reads or writes to the access-address within the scope.
*) Don't cache memory-behavior results. It turned out that the hit-miss rate was pretty bad (~ 1:7). The overhead of the cache lookup took as long as recomputing the memory behavior.
Changes in this CR add part of the, Swift based, Autodiff specific
closure specialization optimization pass. The pass does not modify any
code nor does it even exist in any of the optimization pipelines. The
rationale for pushing this partially complete optimization pass upstream
is to keep up with the breaking changes in the underlying Swift based
compiler infrastructure.
Compute, update and handle borrowed-from instruction in various utilities and passes.
Also, used borrowed-from to simplify `gatherBorrowIntroducers` and `gatherEnclosingValues`.
Replace those utilities by `Value.getBorrowIntroducers` and `Value.getEnclosingValues`, which return a lazily computed Sequence of borrowed/enclosing values.
Enable KeyPath/AnyKeyPath/PartialKeyPath/WritableKeyPath in Embedded Swift, but
for compile-time use only:
- Add keypath optimizations into the mandatory optimizations pipeline
- Allow keypath optimizations to look through begin_borrow, to make them work
even in OSSA.
- If a use of a KeyPath doesn't optimize away, diagnose in PerformanceDiagnostics
- Make UnsafePointer.pointer(to:) transparent to allow the keypath optimization
to happen in the callers of UnsafePointer.pointer(to:).
Specifies that the optimizer and IRGen must not add runtime calls which are not in the function originally.
This attribute is set for functions with performance constraints or functions which are called from functions with performance.
We need to keep the original linkage because it would be illegal to call a shared not-serialized function from a serialized function.
Also, rename the API to create the specialized function.
Add a new mandatory BooleanLiteralFolding pass which constant folds conditional branches with boolean literals as operands.
```
%1 = integer_literal -1
%2 = apply %bool_init(%1) // Bool.init(_builtinBooleanLiteral:)
%3 = struct_extract %2, #Bool._value
cond_br %3, bb1, bb2
```
->
```
...
br bb1
```
This pass is intended to run before DefiniteInitialization, where mandatory inlining and constant folding didn't run, yet (which would perform this kind of optimization).
This optimization is required to let DefiniteInitialization handle boolean literals correctly.
For example in infinite loops:
```
init() {
while true { // DI need to know that there is no loop exit from this while-statement
if some_condition {
member_field = init_value
break
}
}
}
```
It notifies the pass manager that the optimization result of the current pass depends on the body (i.e. SIL instructions) of another function than the currently optimized one.
Optionally, the dependency to the initialization of the global can be specified with a dependency token `depends_on <token>`.
This is usually a `builtin "once"` which calls the initializer for the global variable.
Layers:
- FunctionConvention: AST FunctionType: results, parameters
- ArgumentConventions: SIL function arguments
- ApplyOperandConventions: applied operands
The meaning of an integer index is determined by the collection
type. All the mapping between the various indices (results,
parameters, SIL argument, applied arguments) is restricted to the
collection type that owns that mapping. Remove the concept of a
"caller argument index".
By default it lowers the builtin to an `alloc_vector` with a paired `dealloc_stack`.
If the builtin appears in the initializer of a global variable and the vector elements are initialized,
a statically initialized global is created where the initializer is a `vector` instruction.
In regular swift this is a nice optimization. In embedded swift it's a requirement, because the compiler needs to be able to specialize generic deinits of non-copyable types.
The new de-virtualization utilities are called from two places:
* from the new DeinitDevirtualizer pass. It replaces the old MoveOnlyDeinitDevirtualization, which is very basic and does not fulfill the needs for embedded swift.
* from MandatoryPerformanceOptimizations for embedded swift
ASTGen always builds with the host Swift compiler, without requiring
bootstrapping, and is enabled in more places. Move the regex literal
parsing logic there so it is enabled in more host environments, and
makes use of CMake's Swift support. Enable all of the regex literal
tests when ASTGen is built, to ensure everything is working.
Remove the "AST" and "Parse" Swift modules from SwiftCompilerSources,
because they are no longer needed.