Implement name mangling, type metadata, runtime demangling, etc. for
global-actor qualified function types. Ensure that the manglings
round-trip through the various subsystems.
Implements rdar://78269642.
This commit changes JobFlags storage to be 32bits, but leaves the runtime
API expressed in terms of size_t. This allows us to pack an Id in the
32bits we freed up.
The offset of this Id in the AsyncTask is an ABI constant. This way
introspection tools can extract the currently running task identifier
without any need for special APIs.
* [Concurrency] Reduce overhead of Task.yield and Task.sleep
Instead of creating a new task, we create a simple job that wraps a Builtin.RawUnsafeContinuation and resumes the continuation when it is executed. The job instance is allocated on the task local allocator, meaning we don't malloc anything.
* Update stdlib/public/Concurrency/Task.swift
Co-authored-by: Konrad `ktoso` Malawski <konrad.malawski@project13.pl>
Co-authored-by: Konrad `ktoso` Malawski <konrad.malawski@project13.pl>
It seems that MSVC 2017 trips parsing an using of a using of a variadic
template. Removing one level of using seems to work fine. A preprocessor
macro allows to keep using the same syntax in both MSVC 2017 and other
compilers without making a lot of a mess.
I think this might have been uncovered by landing apple/llvm-project#2898
when it was picked up by the auto-merger for the swift/main branch.
I think this was not a problem until now, because Metadata.h was
compiled using the just compiled Clang until now. LLDB is compiled using
MSVC in Windows.
Previously, they were storing a low-bit flag that indicated that they
were a default actor. Using an extra inhabitant frees up the low bit
for future use without being conspicuously more expensive to check.
- Introduce an UnownedSerialExecutor type into the concurrency library.
- Create a SerialExecutor protocol which allows an executor type to
change how it executes jobs.
- Add an unownedExecutor requirement to the Actor protocol.
- Change the ABI for ExecutorRef so that it stores a SerialExecutor
witness table pointer in the implementation field. This effectively
makes ExecutorRef an `unowned(unsafe) SerialExecutor`, except that
default actors are represented without a witness table pointer (just
a bit-pattern).
- Synthesize the unownedExecutor method for default actors (i.e. actors
that don't provide an unownedExecutor property).
- Make synthesized unownedExecutor properties `final`, and give them
a semantics attribute specifying that they're for default actors.
- Split `Builtin.buildSerialExecutorRef` into a few more precise
builtins. We're not using the main-actor one yet, though.
Pitch thread:
https://forums.swift.org/t/support-custom-executors-in-swift-concurrency/44425
Allow runtime metadata queries to determine if a "class" (in the
runtime) is actually an actor by adding a bit to the class context
descriptor's type-specific kind flags.
Implements rdar://77073762.
Per updates to the Structured Concurrency protocol, make the `async`
operation (1) overloaded on throwing-ness and (2) return an appropriate
`Task.Handle`.
Also, do this for the initial slab for the task's allocator itself.
This avoids memory allocations for async-lets.
In case the async-task's memory demand does not exceed the initial slab size, it is now completely malloc-free.
The refcount bits of an async-let task are initialized to "immortal" so that ARC operations don't have an effect on the task.
The closure does not escape the startAsyncLet - endAsyncLet scope. Even though it's (potentially) running on a different thread.
The substantial change in the runtime is to not call swift_release on the closure context if it's a non-escaping closure.
* Move differentiability kinds from target function type metadata to trailing objects so that we don't exhaust all remaining bits of function type metadata.
* Differentiability kind is now stored in a tail-allocated word when function type flags say it's differentiable, located immediately after the normal function type metadata's contents (with proper alignment in between).
* Add new runtime function `swift_getFunctionTypeMetadataDifferentiable` which handles differentiable function types.
* Fix mangling of different differentiability kinds in function types. Mangle it like `ConcurrentFunctionType` so that we can drop special cases for escaping functions.
```
function-signature ::= params-type params-type async? sendable? throws? differentiable? // results and parameters
...
differentiable ::= 'jf' // @differentiable(_forward) on function type
differentiable ::= 'jr' // @differentiable(reverse) on function type
differentiable ::= 'jd' // @differentiable on function type
differentiable ::= 'jl' // @differentiable(_linear) on function type
```
Resolves rdar://75240064.
The immediate desire is to minimize the set of ABI dependencies
on the layout of an ExecutorRef. In addition to that, however,
I wanted to generally reduce the code size impact of an unsafe
continuation since it now requires accessing thread-local state,
and I wanted resumption to not have to create unnecessary type
metadata for the value type just to do the initialization.
Therefore, I've introduced a swift_continuation_init function
which handles the default initialization of a continuation
and returns a reference to the current task. I've also moved
the initialization of the normal continuation result into the
caller (out of the runtime), and I've moved the resumption-side
cmpxchg into the runtime (and prior to the task being enqueued).
Fill out the metadata for Job to have a Dispatch-compatible vtable. When available, use the dispatch_enqueue_onto_queue_4Swift to enqueue Jobs directly onto queues. Otherwise, keep using dispatch_async_f as we have been.
rdar://75227953
In 26b35494e6, new bits were spoken for in
MethodDescriptorFlags and ProtocolRequirementFlags to indicate that a
field is an async function pointer and as such must is treated as data
for the purposes of ptrauth.
Previously, that bit was named IsSignedAsData because indeed async
function pointers must be signed and authed as data.
We should make the representation semantic, however, so here that name
is changed to IsAsync.
It is necessary to determine whether a given method in a vtable or a
witness table ought to be signed as data or as code. For example, async
functions pointers must be signed as data.
Throwing functions pass the error result in `swiftself` to the resume
partial function.
Therefore, `() async -> ()` to `() async throws -> ()` is not ABI compatible.
TODO: go through remaining failing IRGen async tests and replace the
illegal convert_functions.
Most of the async runtime functions have been changed to not
expect the task and executor to be passed in. When knowing the
task and executor is necessary, there are runtime functions
available to recover them.
The biggest change I had to make to a runtime function signature
was to swift_task_switch, which has been altered to expect to be
passed the context and resumption function instead of requiring
the caller to park the task. This has the pleasant consequence
of allowing the implementation to very quickly turn around when
it recognizes that the current executor is satisfactory. It does
mean that on arm64e we have to sign the continuation function
pointer as an argument and then potentially resign it when
assigning into the task's resume slot.
rdar://70546948
Create a TargetDispatchClassMetadata for Swift metadata that also has a dispatch-compatible vtable. Dispatch leaves room for ObjC class metadata so the two regions don't overlap. (The vtable currently consists of a single dummy entry; this will be filled out later.)
Rearrange the Job and AsyncTask hierarchy so that AsyncTask inherits only from Job, which in turn inherits from HeapObject. This gives all Job instances a dispatch-compatible isa field. It also gives them a refcount word, which is wasted on instances that aren't AsyncTask instances. Maybe we can find some use for that space in the future.
rdar://75227953
In their previous form, the non-`_f` variants of these entry points were unused, and IRGen
lowered the `createAsyncTask` builtins to use the `_f` variants with a large amount of caller-side
codegen to manually unpack closure values. Amid all this, it also failed to make anyone responsible
for releasing the closure context after the task completed, causing every task creation to leak.
Redo the `swift_task_create_*` entry points to accept the two words of an async closure value
directly, and unpack the closure to get its invocation entry point and initial context size
inside the runtime. (Also get rid of the non-future `swift_task_create` variant, since it's unused
and it's subtly different in a lot of hairy ways from the future forms. Better to add it later
when it's needed than to have a broken unexercised version now.)