The `-warn-swift3-objc-inference` option turns out to be extremely
useful in vetting code for unintended `@objc` entry points, so make it
available directly on `swiftc`.
But, bury the enable/disable flags under `-frontend` (they were
effectively there anyway because the driver wasn't propagating them).
Introduce an opt-in warning (enabled by the frontend option
-warn-swift3-objc-inference) for each declaration for which @objc is
inferred based on Swift 3 rules that no longer apply after SE-0160.
Flip the polarity of the frontend flag controlling whether TSan treats inout
accesses as conceptual writes. It is now on by default. This lets TSan detect
racing mutating methods even when those methods are not themselves instrumented
(such as methods on Standard Library collections).
This behavior can be disabled by passing:
-Xfrontend -disable-tsan-inout-instrumentation
when compiling under TSan.
rdar://problem/31069963
(This re-applies #7736 with an update to the
tsan-inout.swift execution test to handle configurations where
TSan's ignore_interceptors_accesses is enabled by default.)
Add SILGen instrumentation to treat inout accesses as Thread Sanitizer writes.
The goal is to catch races on inout accesses even when there is a not an
llvm-level read/write to a particular address. Ultimately
this will enable TSan to, for example, report racy writes to distinct
stored properties of a common struct as a data race.
This instrumentation is off by default. It can be enabled with the
'enable-experimental-tsan-inout-instrumentation' frontend flag.
The high-level approach is to add a SIL-level builtin that represents a call
to a TSan routine in compiler-rt. Then, when emitting an address for an LValue
as part of an inout expression, we call this builtin for each path component
that represents an LValue. I've added an 'isRValue()' method to PathComponent
that tracks whether a component represents an RValue or an LValue. Right the
only PathComponent that sometimes returns 'true' is ValueComponent().
For now, we're instrumenting only InoutExprs, but in the future it probably
makes sense to instrument all LValue accesses. In this patch I've
added a 'TSanKind' parameter to SILGenFunction::emitAddressOfLValue() and
its helpers to limit instrumentation to inout accesses. I envision that this
parameter will eventually go away.
Add SILGen instrumentation to treat inout accesses as Thread Sanitizer writes.
The goal is to catch races on inout accesses even when there is a not an
llvm-level read/write to a particular address. Ultimately
this will enable TSan to, for example, report racy writes to distinct
stored properties of a common struct as a data race.
This instrumentation is off by default. It can be enabled with the
'enable-experimental-tsan-inout-instrumentation' frontend flag.
The high-level approach is to add a SIL-level builtin that represents a call
to a TSan routine in compiler-rt. Then, when emitting an address for an LValue
as part of an inout expression, we call this builtin for each path component
that represents an LValue. I've added an 'isRValue()' method to PathComponent
that tracks whether a component represents an RValue or an LValue. Right the
only PathComponent that sometimes returns 'true' is ValueComponent().
For now, we're instrumenting only InoutExprs, but in the future it probably
makes sense to instrument all LValue accesses. In this patch I've
added a 'TSanKind' parameter to SILGenFunction::emitAddressOfLValue() and
its helpers to limit instrumentation to inout accesses. I envision that this
parameter will eventually go away.
SourceKit always sets it positively. This may lead to more aggressive fixits however
less informative messages. We currently use the flag only for filling protocol stubs.
This is disabled by default but enabled under the frontend option
-propagate-constraints.
The idea here is to have a pass that enforces local consistency in our
constraint system, in order to reduce the domains of constraint
variables, speeding up the solving of the constraint system.
The initial focus will be on reducing the size of the disjunctions for
function overloads with the hope that it substantially improves the
performance of type checking many expressions.
[NFC] Add -enable-sil-opaque-values frontend option.
This will be used to change the SIL-level calling convention for opaque values,
such as generics and resilient structs, to pass-by-value. Under this flag,
opaque values have SSA lifetimes, managed by copy_value and destroy_value.
This will make it easier to optimize copies and verify ownership.
* [SILGen] type lowering support for opaque values.
Add OpaqueValueTypeLowering.
Under EnableSILOpaqueValues, lower address-only types as opaque values.
* [SIL] Fix ValueOwnershipKind to support opaque SIL values.
* Test case: SILGen opaque value support for Parameter/ResultConvention.
* [SILGen] opaque value support for function arguments.
* Future Test case: SILGen opaque value specialDest arguments.
* Future Test case: SILGen opaque values: emitOpenExistential.
* Test case: SIL parsing support for EnableSILOpaqueValues.
* SILGen opaque values: prepareArchetypeCallee.
* [SIL Verify] allow copy_value for EnableSILOpaqueValues.
* Test cast: SIL serializer support for opaque values.
* Add a static_assert for ParameterConvention layout.
* Test case: Mandatory SILOpt support for EnableSILOpaqueValues.
* Test case: SILOpt support for EnableSILOpaqueValues.
* SILGen opaque values: TypeLowering emitCopyValue.
* SILBuilder createLoad. Allow loading opaque values.
* SIL Verifier. Allow loading and storing opaque values.
* SILGen emitSemanticStore support for opaque values.
* Test case for SILGen emitSemanticStore.
* Test case for SIL mandatory support for inout assignment.
* Fix SILGen opaque values test case after rebasing.
There's a class of errors in Serialization called "circularity
issues", where declaration A in file A.swift depends on declaration B
in file B.swift, and B also depends on A. In some cases we can manage
to type-check each of these files individually due to the laziness of
'validateDecl', but then fail to merge the "partial modules" generated
from A.swift and B.swift to form a single swiftmodule for the library
(because deserialization is a little less lazy for some things). A
common case of this is when at least one of the declarations is
nested, in which case a lookup to find that declaration needs to load
all the members of the parent type. This gets even worse when the
nested type is defined in an extension.
This commit sidesteps that issue specifically for nested types by
creating a top-level, per-file table of nested types in the "partial
modules". When a type is in the same module, we can then look it up
/without/ importing all other members of the parent type.
The long-term solution is to allow accessing any members of a type
without having to load them all, something we should support not just
for module-merging while building a single target but when reading
from imported modules as well. This should improve both compile time
and memory usage, though I'm not sure to what extent. (Unfortunately,
too many things still depend on the whole members list being loaded.)
Because this is a new code path, I put in a switch to turn it off:
frontend flag -disable-serialization-nested-type-lookup-table
https://bugs.swift.org/browse/SR-3707 (and possibly others)
Based off the PlaygroundTransform, this new ASTWalker leaves calls to __builtin_pc_before and __builtin_pc_after before and after a user would expect a program counter to enter a range of source code.
This will allow for semantic arc work to remain behind a flag and not affect
other in tree developers. More importantly it enables for bots to be setup with
this flag enabled.
rdar://28685236
This lets us get to the goal of +0 guaranteed closure contexts. NFC yet, just add the under-the-hood ability for partial_apply instructions producing callee-guaranteed closures to be parsed, printed, and serialized.
Resilient classes are not fully implemented yet, and can cause
crashes at runtime; add a flag disabling them until the code is
done, to unblock standard library testing with resilience
enabled.
Enables Chris's auto-apply-fixes mode for -verify: if an expected-*
annotation has the wrong message, or if the expected fix-its are
incorrect, this option will **edit the original file** to update them.
This is a tool for compiler developers only; it doesn't affect
normal diagnostic printing or normal fix-its.
This eliminates a pile of now-dead code in:
* The type checker, where we no longer have special cases for bridging conversions
* The expression ASTs, where we no longer need to distinguish bridging collection up/down casts
* SILGen, which no longer uses
Still to come is the removal of the
_(set|dictionary)Bridge(From|To)ObjectiveC(Conditional)? entrypoints
from the standard library. They're still used by some tests.
Simplify e.g., ASTContext::getBridgedToObjC(), which no longer needs
the optional return.
Eliminate the now-unused constraint kind for checking bridging to
Objective-C.
I'm slightly sad about losing the lovely code to detect
redundantly-specified defaulted arguments, but we could bring it back
later as a separate warning.
* [ClangImporter] Remove importer-based NS stripping.
As Tony puts it, in the end we wound up with more Foundation
declarations imported as members or keeping "NS" than those that
dropped it, and any further decisions will be made on a case-by-case
basis. Move all of the existing cases of prefix-stripping into
Foundation's API notes and drop the logic from the compiler.
Tested by dumping the generated interface for Foundation and its
submodules for both macOS and the iOS simulator, and comparing the
results. A few cases did slip through here because of the interaction
between "SwiftName" and "Availability: nonswift".
The next commit will re-add "NS" to some stragglers that we missed.
rdar://problem/26880017
* APINotes: Add "NS" back to a few types.
NSKeyedUnarchiverDelegate
NSKeyedArchiverDelegate
NSTextCheckingTypes
NSBinarySearchingOptions
NSEnumerationOptions
NSSortOptions
More rdar://problem/26880017
* Remove now-redundant SwiftNames from API notes.
No change observed in the generated interface of Foundation and its
submodules.
Finishes rdar://problem/26880017.
When referencing a function in the type checker, drop argument labels
when we don't need them to type-check an immediate call to that
function. This provides the semantic behavior of SE-0111, e.g.,
references to functions as values produce unlabeled function types,
without the representational change of actually dropping argument
labels from the type system.
At the moment, this only works for bare references to functions. It
still needs to be pushed through more of the type checker and more AST
nodes to work in the general case.
Keep this work behind the frontend flag
-suppress-argument-labels-in-types for now.
It looks like migration fixits are done, and this doesn't
expose any new bugs that were not possible before, because
you could already define typealiases inside protocol
extensions.
To prevent some compiler_crasher regressions, add a simple
circularity-breaking hack. I'll need to do a sweep to clean
these up some day soon.
Move the option definition into FrontendOptions.td as it no longer can be passed
to the driver. Use the single-dash separate form for the argument which is more
uniform with the rest of the options (and is arguably aesthetically more
pleasing). NFC.
Goes back to Swift 2.2 behavior of treating the 'typealias' keyword inside a protocol as a deprecated form of an associatedtype. To get the newer (but still partly buggy) behavior of treating it as an actual typealias, add "-Xfrontend -enable-protocol-typealiases" to the compile invocation. 'decl/typealias/typealias.swift' now uses this flag to continue testing the enabled behavior.