With this option enabled, the dependency scanner gathers all import statements in source files of the main module (non-transitive) and outputs a list of imported modules.
This will be used by build systems and the swift-driver as a way to avoid redundant re-scanning in incremental contexts.
Specifically the option: -sil-stop-optzns-before-lowering-ownership. This makes
it possible to write end-to-end tests on OSSA passes. Before one would have to
pattern match after ownership was lowered, losing the ability to do finegrained
FileCheck pattern matching on ossa itself.
This scanning mode allows swift-driver to query module dependencies in a batch
and in a more granular way. In short term, it could help solve a problem that
clang module dependencies may vary if target triple changes. In a longer term,
we could break a holistic dependencies graph into smaller pieces for better caching
and reusing.
This change doesn't include the implementation of using the specified scanner
arguments to set up Clang dependencies scanner. It will come in later commits.
For the issue mentioned in rdar://67079780, swift-driver needs to run clang dependencies
scanner multiple times with different target triples for a Swift target. This patch adds
a new scanning action to generate the JSON file for a given clang module to accommodate
this requirement.
Resolves: rdar://problem/67269210
The driver can now schedule jobs which typecheck just-emitted module interfaces to ensure that they can be consumed later. This can be enabled manually by passing `-verify-emitted-module-interface` to the driver.
Add a debugging mechanism that enables the JIT to dump the LLVM IR and
object files to enable debugging the JIT. This makes it easier to debug
the JIT mode failures. The idea was from Lang Hames!
- deduplicate the logic to compute the resource folder
- install headers and module files in shared and static resource folders
- forward -static flag when calling swiftc with -print-target-info
Print implementation-only imports in the private textual interface
only if also importing SPI. This allows to export types from
implementation-only imports in SPI and brings the private textual
interfaces in line with the binary interfaces.
This is a temporary solution as we need to better design the language
feature around this.
This feature requires passing -experimental-spi-imports to the frontend
that generates the private swiftinterface file.
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
Introsuce a new "forward" algorithm for trailing closures where
the unlabeled trailing closure argument matches the next parameter in
the parameter list that can accept an unlabeled trailing closure.
The "can accept an unlabeled trailing closure" criteria looks at the
parameter itself. The parameter accepts an unlabeled trailing closure
if all of the following are true:
* The parameter is not 'inout'
* The adjusted type of the parameter (defined below) is a function type
The adjusted type of the parameter is the parameter's type as
declared, after performing two adjustments:
* If the parameter is an @autoclosure, use the result type of the
parameter's declared (function) type, before performing the second
adjustment.
* Remove all outer "optional" types.
For example, the following function illustrates both adjustments to
determine that the parameter "body" accepts an unlabeled trailing
closure:
func doSomething(body: @autoclosure () -> (((Int) -> String)?))
This is a source-breaking change. However, there is a "fuzzy" matching
rule that that addresses the source break we've observed in practice,
where a defaulted closure parameter precedes a non-defaulted closure
parameter:
func doSomethingElse(
onError: ((Error) -> Void)? = nil,
onCompletion: (Int) -> Void
) { }
doSomethingElse { x in
print(x)
}
With the existing "backward" scan rule, the trailing closure matches
onCompletion, and onError is given the default of "nil". With the
forward scanning rule, the trailing closure matches onError, and there
is no "onCompletion" argument, so the call fails.
The fuzzy matching rule proceeds as follows:
* if the call has a single, unlabeled trailing closure argument, and
* the parameter that would match the unlabeled trailing closure
argument has a default, and
* there are parameters *after* that parameter that require an argument
(i.e., they are not variadic and do not have a default argument)
then the forward scan skips this parameter and considers the next
parameter that could accept the unlabeled trailing closure.
Note that APIs like doSomethingElse(onError:onCompletion:) above
should probably be reworked to put the defaulted parameters at the
end, which works better with the forward scan and with multiple
trailing closures:
func doSomethingElseBetter(
onCompletion: (Int) -> Void,
onError: ((Error) -> Void)? = nil
) { }
doSomethingElseBetter { x in
print(x)
}
doSomethingElseBetter { x in
print(x)
} onError: { error in
throw error
}
Introduce a new frontend flag -enable-volatile-modules to trigger
loading swiftmodule files as volatile and avoid using mmap. Revert the
default behavior to using mmap.
-compile-module-from-interface action now takes arguments of -candidate-module-file.
If one of the candidate module files is up-to-date, the action emits a forwarding
module pointing to the candidate module instead of building a binary module.
This flag no longer does anything now that the unified statistics
reporting infrastructure exists. It is better to use
-driver-time-compilation to see a bird's eye view of timing statistics
for frontend jobs, and -stats-output-dir to see a down-and-dirty view of
everything including performance counters.
Add -experimental-enable-concise-pound-file to the list of flags preserved by module interfaces, so that when we rebuild an interface, it comes out the same way as the original file.
This doesn't yet allow including C++ headers on platforms where libc++
isn't the default; see comments in UnixToolChains.cpp for details.
However, it does, for example, allow throwing and catching exceptions in C++
code used through interop, unblocking
https://github.com/apple/swift/pull/30674/files.
The flags (-enable-experimental-cxx-interop and -experimental-cxx-stdlib) carry
"experimental" in the name to emphasize that C++ interop is still an
experimental feature.
Co-authored-by: Michael Forster <forster@google.com>
This commit adds -lto flag for frontend to enable LTO at LLVM level.
When -lto=llvm given, compiler emits LLVM bitcode file instead of object
file and adds index summary for LTO.
In addition for ELF format, emit llvm.dependent-libraries section to
embed auto linking information