"reborrow" flag on the SILArgument avoids transitive walk over the phi operandsi
to determine if it is a reborrow in multiple utilities.
SIL transforms must keep the flag up-to-date by calling SILArgument::setReborrow.
SILVerifier checks to ensure the flag is not invalidated.
Currently "escaping" is not used anywhere.
This patch replaces the stateful generation of SILScope information in
SILGenFunction with data derived from the ASTScope hierarchy, which should be
100% in sync with the scopes needed for local variables. The goal is to
eliminate the surprising effects that the stack of cleanup operations can have
on the current state of SILBuilder leading to a fully deterministic (in the
sense of: predictible by a human) association of SILDebugScopes with
SILInstructions. The patch also eliminates the need to many workarounds. There
are still some accomodations for several Sema transformation passes such as
ResultBuilders, which don't correctly update the source locations when moving
around nodes. If these were implemented as macros, this problem would disappear.
This necessary rewrite of the macro scope handling included in this patch also
adds proper support nested macro expansions.
This fixes
rdar://88274783
and either fixes or at least partially addresses the following:
rdar://89252827
rdar://105186946
rdar://105757810
rdar://105997826
rdar://105102288
This is in preparation for wiring up debug info support for noncopyable
values. Originally this flag name made sense since it was set when we performed
consume operator checking. Now I am going to use it for noncopyable types as
well. I think the new name uses_moveable_value_debuginfo actually describes what
the flag is supposed to do, tell IRGen that the value may be moved since it
needs to use moveable value debug info emission.
Although nonescaping closures are representationally trivial pointers to their
on-stack context, it is useful to model them as borrowing their captures, which
allows for checking correct use of move-only values across the closure, and
lets us model the lifetime dependence between a closure and its captures without
an ad-hoc web of `mark_dependence` instructions.
During ownership elimination, We eliminate copy/destroy_value instructions and
end the partial_apply's lifetime with an explicit dealloc_stack as before,
for compatibility with existing IRGen and non-OSSA aware passes.
I had a fix a bunch of bugs in this, which isn't very surprising.
I changed remapSubstitutionMap to preserve the non-canonical signature
of the substitutions because otherwise it messes up printing
open_pack_element pretty badly --- we end up printing a sugared shape
class but a desugared generic signature. I'd rather not eagerly
canonicalize everything there because the sugar is quite nice.
Still, I don't feel great about this approach, and this is the
second time I've found myself doing something a little gross in order
to preserve sugar for printing this instruction.
Canonicalizing the replacement types is important for test stability,
and I think it's good downstream.
The most interesting part of this is that I implemented a rule which
handles tuple types becoming scalar as part of the substitution of
tuple_pack_element_addr. We talked about having this rule in the
formal type system, and I thought we were going to do it, but it
looks like we haven't actually implemented that yet. I added it to
SIL substitution because (1) I anticipate we'll be doing this
eventually in the formal type system, and that will have consequences
for SIL, and (2) we don't actually have a way to parse these singleton
tuple types, and I didn't want expanding singleton packs into tuples
to become this weird untestable corner case. I did have to poke a
hole in this rule to preserve types that were singleton tuples before
substitution, since apparently AutoDiff makes a lot of those.
I think adding a type_refine_addr that statically asserts a type
match is the right way to go in the long term for rewriting
singleton tuple_pack_element_addr, but I'm a little sick of adding
SIL instructions, so we just rewrite to unchecked_addr_cast for now.
This instruction can be inserted by Onone optimizations as a replacement for deleted instructions to
ensure that it's possible to single step on its location.
This allows dynamically indexing into tuples. IRGen not yet
implemented.
I think I'm going to need a type_refine_addr instruction in
order to handle substitutions into the operand type that
eliminate the outer layer of tuple-ness. Gonna handle that
in a follow-up commit.
Having added these, I'm not entirely sure we couldn't just use
alloc_stack and dealloc_stack. Well, if we find ourselves adding
a lot of redundancy with those instructions (e.g. around DI), we
can always go back and rip these out.
This lets us write optimizer unit tests and selectively debug the
optimizer in general. We'll be able trace analyses and control
optimization selectively for certain values.
Adding a trace flag to debug_value is the easiest way to start using
it experimentally and develop the rest of the infrastructure. If this
takes off, then we can consider a new `trace_value`
instruction. For now, reusing debug_value is the least intrusive way to
start writing liveness unit tests.
This is a dedicated instruction for incrementing a
profiler counter, which lowers to the
`llvm.instrprof.increment` intrinsic. This
replaces the builtin instruction that was
previously used, and ensures that its arguments
are statically known. This ensures that SIL
optimization passes do not invalidate the
instruction, fixing some code coverage cases in
`-O`.
rdar://39146527
Map store_borrow return_address with the destination, so that while cloning a store_borrow into a function w/o ownership,
users of store_borrow return address can be mapped with the lowered store's destination.
This is exactly like copy_addr except that it is not viewed from the verifiers
perspective as an "invalid" copy of a move only value. It is intended to be used
in two contexts:
1. When the move checker emits a diagnostic since it could not eliminate a copy,
we still need to produce valid SIL without copy_addr on move only types since we
will hit canonical SIL eventually even if we don't actually codegen the SIL. The
pass can just convert said copy_addr to explicit_copy_addr and everyone is
happy.
2. To implement the explicit copy function for address only types.
Andy some time ago already created the new API but didn't go through and update
the old occurences. I did that in this PR and then deprecated the old API. The
tree is clean, so I could just remove it, but I decided to be nicer to
downstream people by deprecating it first.
Specifically this means that rather than always being owned, we now have owned
and guaranteed versions of copyable_to_moveonlywrapper. Similar to
moveonlywrapper_to_copyable, one chooses which variant one gets by using
specific SILBuilder APIs:
create{Owned,Guaranteed}CopyableToMoveOnlyWrapperValueInst. It is still
forwarding and the rest of the forwarding APIs work as expected except that the
forwarding ownership is fixed (and an assertion will result if one attempts to
do so).
NOTE: It is assumed that trivial operands are always passed to the owned
variant.
These instructions have the following attributes:
1. copyably_to_moveonlywrapper takes in a 'T' and maps it to a '@moveOnly
T'. This is semantically used when initializing a new moveOnly binding from a
copyable value. It semantically destroys its input @owned value and returns a
brand new independent @owned @moveOnly value. It also is used to convert a
trivial copyable value with type 'Trivial' into an owned non-trivial value of
type '@moveOnly Trivial'. If one thinks of '@moveOnly' as a monad, this is how
one injects a copyable value into the move only space.
2. moveonlywrapper_to_copyable takes in a '@moveOnly T' and produces a new 'T'
value. This is a 'forwarding' instruction where at parse time, we only allow for
one to choose it to be [owned] or [guaranteed].
* moveonlywrapper_to_copyable [owned] is used to signal the end of lifetime of
the '@moveOnly' wrapper. SILGen inserts these when ever a move only value has
its ownership passed to a situation where a copyable value is needed. Since it
is consuming, we know that the no implicit copy checker will ensure that if we
need a copy for it, the program will emit a diagnostic.
* moveonlywrapper_to_copyable [guaranteed] is used to pass a @moveOnly T value
as a copyable guaranteed parameter with type 'T' to a function. In the case of
using no-implicit-copy checking this is always fine since no-implicit-copy is a
local pattern. This would be an error when performing no escape
checking. Importantly, this instruction also is where in the case of an
@moveOnly trivial type, we convert from the non-trivial representation to the
trivial representation.
Some important notes:
1. In a forthcoming commit, I am going to rebase the no implicit copy checker on
top of these instructions. By using '@moveOnly' in the type system, we can
ensure that later in the SIL pipeline, we can have optimizations easily ignore
the code.
2. Be aware of is that due to SILGen only emitting '@moveOnly T' along immediate
accesses to the variable and always converts to a copyable representation when
calling other code, we can simply eliminate from the IR all moveonly-ness from
the IR using a lowering pass (that I am going to upstream). In the evil scheme
we are accomplishing here, we perform lowering of trivial values right after
ownership lowering and before diagnostics to simplify the pipeline.
On another note, I also fixed a few things in SILParsing around getASTType() vs
getRawASTType().
This ensures that opened archetypes always inherit any outer generic parameters from the context in which they reside. This matters because class bounds may bind generic parameters from these outer contexts, and without the outer context you can wind up with ill-formed generic environments like
<τ_0_0, where τ_0_0 : C<T>, τ_0_0 : P>
Where T is otherwise unbound because there is no entry for it among the generic parameters of the environment's associated generic signature.
Reduces the number of _ContiguousArrayStorage metadata.
In order to support constant time bridging we do need to set the correct
metadata when we bridge to Objective-C. This is so that the type check
succeeds when bridging back from Objective-C to reuse the storage
instance rather than bridging the elements.
To support dynamically setting the `_ContiguousArrayStorage` element
type i needed to add support for optimizing `alloc_ref_dynamic`
throughout the optimizer.
Possible future improvements:
* Use different metadata such that we can disambiguate native Swift
classes during destruction -- allowing native release rather then unknown
release usage.
* Optimize the newly added semantic function
getContiguousArrayStorageType
rdar://86171143
The main effect of this will be that in IRGen we will use llvm.dbg.addr instead
of llvm.dbg.declare. We must do this since llvm.dbg.declare implies that the
given address is valid throughout the program.
This just adds the instructions/printing/parsing/serialization/deserialization.
rdar://85020571
Clients can explicitly ask for the opened existential type on the archetype's generic environment,
or use `getExistentialType` to obtain a specific archetype's upper bounds.
This is an instruction that I am going to use to drive some of the ownership
based dataflow optimizations that I am writing now. The instruction contains a
kind that allows one to know what type of checking is required and allows the
need to add a bunch of independent instructions for independent checkers. Each
checker is responsible for removing all of its own mark instructions. NOTE:
MarkMustCheckInst is only allowed in Raw SIL since once we are in Canonical SIL
we want to ensure that all such checking has already occurred.
The new flag will be used to track whether a move_value corresponds to a
source-level lexical scope. Here, the flag is just added to the
instruction and represented in textual and serialized SIL.
Form opened archetype types based on an interface type and existential
type, rather than assuming all OpenedArchetypeType instances only
represent the root. Sink the UUID, existential type, and actual creation
of the opened archetype into the opened generic environment, so we
consistently only create new archetype instances from the generic
environment. This slims down OpenedArchetypeType and makes it work
similarly to the other archetype kinds, as well as generalizing it
to support nested types.
Sink the existential type and UUID of an