This is the lifetime ending variant of fix_lifetime. It is a lie to the
ownership verifier that a value is being consumed along a path. Its intention is
to be used to allow for the static verification of ownership in deallocating
deinits which for compatibility with objective-c have weird ownership behavior.
See the commit merged with this commit for more information.
The reason why I am introducing special instructions is so I can maintain the
qualified ownership API wedge in between qualified SIL and the rest of the ARC
instructions that are pervasively used in the compiler.
These instructions in the future /could/ be extended to just take @sil_unmanaged
operands directly, but I want to maintain flexibility to take regular
non-trivial operands in the short term.
rdar://29791263
For a long time, we have:
1. Created methods on SILArgument that only work on either function arguments or
block arguments.
2. Created code paths in the compiler that only allow for "function"
SILArguments or "block" SILArguments.
This commit refactors SILArgument into two subclasses, SILPHIArgument and
SILFunctionArgument, separates the function and block APIs onto the subclasses
(leaving the common APIs on SILArgument). It also goes through and changes all
places in the compiler that conditionalize on one of the forms of SILArgument to
just use the relevant subclass. This is made easier by the relevant APIs not
being on SILArgument anymore. If you take a quick look through you will see that
the API now expresses a lot more of its intention.
The reason why I am performing this refactoring now is that SILFunctionArguments
have a ValueOwnershipKind defined by the given function's signature. On the
other hand, SILBlockArguments have a stored ValueOwnershipKind. Rather than
store ValueOwnershipKind in both instances and in the function case have a dead
variable, I decided to just bite the bullet and fix this.
rdar://29671437
This was in the first high level ARC instruction proposal, but I have not needed
it until now. The use case for this is to ahandle strong_retain_unowned (which
takes in an unowned value, asserts it is still alive, performs a strong_retain,
and returns the @owned value). This @owned value needs a destroy_value.
rdar://29671437
This is a cleanup for SILParsing/Printing. I verified that everything was
spelled correctly by taking the current parsing switch moving that into a file,
regenerating it using the .def file and then diffed them. The diff was the same.
rdar://28685236
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
This instruction creates a "virtual" address to represent a property with a behavior that supports definite initialization. The instruction holds references to functions that perform the initialization and 'set' logic for the property. It will be DI's job to rewrite assignments into this virtual address into calls to the initializer or setter based on the initialization state of the property at the time of assignment.
If a global variable in a module we are compiling has a type containing
a resilient value type from a different module, we don't know the size
at compile time, so we cannot allocate storage for the global statically.
Instead, we will use a buffer, just like alloc_stack does for archetypes
and resilient value types.
This adds a new SIL instruction but does not yet make use of it.
There's a buggy SIL verifier check that was previously tautological,
and it turns out that it's violated, apparently harmlessly. Since it
was already doing nothing, I've commented it out temporarily while
I figure out the right way to fix SILGen to get the invariant right.
This will be used in call graph construction so that we can model calls
to deinits that are potentially called as a result of executing
instructions that can end up releasing memory.
We need a SIL level unsafe cast that supports arbitrary usage of
UnsafePointer, generalizes Builtin.reinterpretCast, and has the same
semantics on generic vs. nongeneric code. In other words, we need to
be able to promote the cast of an address type to the cast of an
object type without changing semantics, and that cast needs to support
types that are not layout identical.
This patch introduces an unchecked_bitwise_cast instruction for that
purpose. It is different from unsafe_addr_cast, which has been our
fall-back "unknown" cast in the past. With unchecked_bitwise_cast we
cannot assume layout or RC identity. The cast implies a store and
reload of the value to obtain the low order bytes. I know that
bit_cast is just an abbreviation for bitwise_cast, but we use
"bitcast" throught to imply copying a same sized value. No one could
come up with a better name for copying an objects low bytes via:
@addr = alloca $wideTy
store @addr, $wideTy
load @addr, $narrowTy
Followup patches will optimize unchecked_bitwise_cast into more
semantically useful unchecked casts when enough type information is
present. This way, the optimizer will rarely need to be taught about
the bitwise case.
Swift SVN r29510
Still no implementation yet; we'll need to renovate how boxes work a bit to make them projectable (and renovate SILGen to generate typed boxes for the insn to be useful).
Swift SVN r29490
This reverts commit r29475 because it conflicts with reverting r29474,
and it looks like that commit is breaking the build of the SpriteKit
overlay.
Swift SVN r29481
Still no implementation yet; we'll need to renovate how boxes work a bit to make them projectable (and renovate SILGen to generate typed boxes for the insn to be useful).
Swift SVN r29475