It is currently disabled so this commit is NFC.
MandatoryCopyPropagation canonicalizes all all OSSA lifetimes with
either CopyValue or DestroyValue operations. While regular
CopyPropagation only canonicalizes lifetimes with copies. This ensures
that more lifetime program bugs are found in debug builds. Eventually,
regular CopyPropagation will also canonicalize all lifetimes, but for
now, we don't want to expose optimized code to more behavior change
than necessary.
Add frontend flags for developers to easily control copy propagation:
-enable-copy-propagation: enables whatever form of copy propagation
the current pipeline runs (mandatory-copy-propagation at -Onone,
regular copy-propation at -O).
-disable-copy-propagation: similarly disables any form of copy
propagation in the current pipelien.
To control a specific variant of the passes, use
-Xllvm -disable-pass=mandatory-copy-propagation
or -Xllvm -disable-pass=copy-propagation instead.
The meaning of these flags will stay the same as we adjust the
defaults. Soon mandatory-copy-propagation will be enabled by
default. There are two reasons to do this, both related to predictable
behavior across Debug and Release builds.
1. Shortening object lifetimes can cause observable changes in program
behavior in the presense of weak/unowned reference and
deinitializer side effects.
2. Programmers need to know reliably whether a given code pattern will
copy the storage for copy-on-write types (Array, Set). Eliminating
the "unexpected" copies the same way at -Onone and -O both makes
debugging tractable and provides assurance that the code isn't
relying on the luck of the optimizer in a particular compiler
release.
When the underlying utility was changed for OSSA, it changed the
semantics of the callback, which breaks the way I've always used a
deletion callback to update iterators.
/// \p callback is called on each deleted instruction before deleting any
/// instructions. This way, the SIL is valid in the callback. However, the
/// callback cannot be used to update instruction iterators since other
/// instructions to be deleted remain in the instruction list.
Enable most simplify-cfg optimizations as long as the block arguments
have trivial types. Enable most simplify CFG unit tests cases.
This massively reduces the size of the CFG during OSSA passes.
Test cases that aren't supported in OSSA yet have been moved to a
separate test file for disabled OSSA tests,
Full simplify-cfg support is currently blocked on OSSA utilities which
I haven't checked in yet.
The DiagnoseLifetimeIssuesPass pass prints a warning if an object is stored to a weak property (or is weakly captured) and destroyed before the property (or captured reference) is ever used again.
This can happen if the programmer relies on the lexical scope to keep an object alive, but copy-propagation can shrink the object's lifetime to its last use.
For example:
func test() {
let k = Klass()
// k is deallocated immediately after the closure capture (a store_weak).
functionWithClosure({ [weak k] in
// crash!
k!.foo()
})
}
Unfortunately this pass can only catch simple cases, but it's better than nothing.
rdar://73910632
Add the following new mangling rules.
```
global ::= from-type to-type 'TJO' AUTODIFF-FUNCTION-KIND // autodiff self-reordering reabstraction thunk
global ::= from-type 'TJS' AUTODIFF-FUNCTION-KIND INDEX-SUBSET 'p' INDEX-SUBSET 'r' INDEX-SUBSET 'P' // autodiff linear map subset parameters thunk
global ::= global to-type 'TJS' AUTODIFF-FUNCTION-KIND INDEX-SUBSET 'p' INDEX-SUBSET 'r' INDEX-SUBSET 'P' // autodiff derivative function subset parameters thunk
```
Example:
```console
$s13TangentVector16_Differentiation14DifferentiablePQzAaDQy_SdAFIegnnnr_TJSdSSSpSrSUSP ---> autodiff subset parameters thunk for differential from @escaping @callee_guaranteed (@in_guaranteed A._Differentiation.Differentiable.TangentVector, @in_guaranteed B._Differentiation.Differentiable.TangentVector, @in_guaranteed Swift.Double) -> (@out B._Differentiation.Differentiable.TangentVector) with respect to parameters {0, 1, 2} and results {0} to parameters {0, 2}
$sS2f8mangling3FooV13TangentVectorVIegydd_SfAESfIegydd_TJOp ---> autodiff self-reordering reabstraction thunk for pullback from @escaping @callee_guaranteed (@unowned Swift.Float) -> (@unowned Swift.Float, @unowned mangling.Foo.TangentVector) to @escaping @callee_guaranteed (@unowned Swift.Float) -> (@unowned mangling.Foo.TangentVector, @unowned Swift.Float)
```
Resolves rdar://72666310 / SR-13508.
Also fix a bug in `AutoDiffFunction` mangling where the original may be a global that contains more than 1 node (rdar://74151229 / SR-14106).
We cannot replace a load from a global let-variable with a function_ref, if the referenced function would violate the resilience rules.
That means if a non-public function_ref would be inlined into a function which is serialized.
Instead make `findJointPostDominatingSet` a stand-alone function.
There is no need to keep the temporary SmallVector alive across multiple calls of findJointPostDominatingSet for the purpose of re-using malloc'ed memory. The worklist usually contains way less elements than its small size.
This is necessitated by the SILArgument representation. It has the
tragic property that adding unrelated phis invalidates existing
phis. Therefore, the optimizer can't do book-keeping of phi values by
refering directly to SILValues or Operands. Instead, it must only
refer to SILBasicBlocks and argument indices.
Some notes:
1. I moved the identity round-trip case to InstSimplify since that is where
optimizations like that are.
2. I did not update in this commit the code that eliminates convert_function
when it is only destroyed. In a subsequent commit I am going to implement
that in a general way and apply it to all forwarding instructions.
3. I implemented eliminating convert_function with ownership only uses in a
utility so that I can reuse it for other similar optimizations in SILCombine.
This removes the ambiguity when casting from a SingleValueInstruction to SILNode, which makes the code simpler. E.g. the "isRepresentativeSILNode" logic is not needed anymore.
Also, it reduces the size of the most used instruction class - SingleValueInstruction - by one pointer.
Conceptually, SILInstruction is still a SILNode. But implementation-wise SILNode is not a base class of SILInstruction anymore.
Only the two sub-classes of SILInstruction - SingleValueInstruction and NonSingleValueInstruction - inherit from SILNode. SingleValueInstruction's SILNode is embedded into a ValueBase and its relative offset in the class is the same as in NonSingleValueInstruction (see SILNodeOffsetChecker).
This makes it possible to cast from a SILInstruction to a SILNode without knowing which SILInstruction sub-class it is.
Casting to SILNode cannot be done implicitly, but only with an LLVM `cast` or with SILInstruction::asSILNode(). But this is a rare case anyway.
Instead of saving BorrowingOperand on the context save the SILBasicBlock
and index of the terminator operand.
This avoids the use-after-free in eliminateReborrowsOfRecursiveBorrows.
Previously, eliminateReborrowsOfRecursiveBorrows called helper
insertOwnedBaseValueAlongBranchEdge, which can delete a branch
instruction (reborrow) that could have been cached in
recursiveReborrows.
This removes the ambiguity when casting from a SingleValueInstruction to SILNode, which makes the code simpler. E.g. the "isRepresentativeSILNode" logic is not needed anymore.
Also, it reduces the size of the most used instruction class - SingleValueInstruction - by one pointer.
Conceptually, SILInstruction is still a SILNode. But implementation-wise SILNode is not a base class of SILInstruction anymore.
Only the two sub-classes of SILInstruction - SingleValueInstruction and NonSingleValueInstruction - inherit from SILNode. SingleValueInstruction's SILNode is embedded into a ValueBase and its relative offset in the class is the same as in NonSingleValueInstruction (see SILNodeOffsetChecker).
This makes it possible to cast from a SILInstruction to a SILNode without knowing which SILInstruction sub-class it is.
Casting to SILNode cannot be done implicitly, but only with an LLVM `cast` or with SILInstruction::asSILNode(). But this is a rare case anyway.
Add support for interleaved borrow scopes:
%b1 = begin_borrow %a
%c = copy
%b2 = begin_borrow %b1
end_borrow %b1
use %c
end_borrow %b2
Will be transformed to:
%c = copy %a
%b1 = begin_borrow %a
%b2 = begin_borrow %b1
end_borrow %b1
use %c
end_borrow %b2
This was the original intention but the implementation was incomplete.
This option can be enabled as soon as we need it for performance.
The intention is also to handle multi-block borrows, but that hasn't
been implemented.
In OSSA, we enforce that addresses from interior pointer instructions are scoped
within a borrow scope. This means that it is invalid to use such an address
outside of its parent borrow scope and as a result one can not just RAUW an
address value by a dominating address value since the latter may be invalid at
the former. I foresee that I am going to have to solve this problem and so I
decided to write this API to handle the vast majority of cases.
The way this API works is that it:
1. Computes an access path with base for the new value. If we do not have a base
value and a valid access path with root, we bail.
2. Then we check if our base value is the result of an interior pointer
instruction. If it isn't, we are immediately done and can RAUW without further
delay.
3. If we do have an interior pointer instruction, we see if the immediate
guaranteed value we projected from has a single borrow introducer value. If not,
we bail. I think this is reasonable since with time, all guaranteed values will
always only have a single borrow introducing value (once struct, tuple,
destructure_struct, destructure_tuple become reborrows).
4. Then we gather up all inner uses of our access path. If for some reason that
fails, we bail.
5. Then we see if all of those uses are within our borrow scope. If so, we can
RAUW without any further worry.
6. Otherwise, we perform a copy+borrow of our interior pointer's operand value
at the interior pointer, create a copy of the interior pointer instruction upon
this new borrow and then RAUW oldValue with that instead. By construction all
uses of oldValue will be within this new interior pointer scope.
The reason why I am doing this is that I am building up more utilities based on
passing around this struct of context that do not want it for RAUWing
purposes. So it makes sense on a helper (OwnershipRAUWHelper) that composes with
its state.
Just a refactor, should be NFC.
Currently all of these places in the code base perform simplifyInstruction and
then a replaceAllSimplifiedUsesAndErase(...). This is a bad pattern since:
1. simplifyInstruction assumes its result will be passed to
replaceAllSimplifiedUsesAndErase. So by leaving these as separate things, we
allow for users to pointlessly make this mistake.
2. I am going to implement in a subsequent commit a utility that lifetime
extends interior pointer bases when replacing an address with an interior
pointer derived address. To do this efficiently, I want to reuse state I
compute during simplifyInstruction during the actual RAUW meaning that if the
two operations are split, that is difficult without extending the API. So by
removing this, I can make the transform and eliminate mistakes at the same
time.
Access scopes for enforcing exclusivity are currently the only
exception to our ability to canonicalize OSSA lifetime purely based on
the SSA value's known uses. This is because access scopes have
semantics relative to object deinitializers.
In general, deinitializers are asynchronous with respect to code that
is unrelated to the object's uses. Ignoring exclusivity, the optimizer
may always destroy objects as early as it wants, as long as the object
won't be used again. The optimizer may also extend the lifetime
(although in the future this lifetime extension should be limited by
"synchronization points").
The optimizer's freedom is however limited by exclusivity
enforcement. Optimization may never introduce new exclusivity
violations. Destroying an object within an access scope is an
exclusivity violation if the deinitializer accesses the same variable.
To handle this, OSSA canonicalization must detect access scopes that
overlap with the end of the pruned extended lifetime. Essentially:
%def
begin_access // access scope unrelated to def
use %def // pruned liveness ends here
end_access
destroy %def
Support for access scopes composes cleanly with the existing algorithm
without adding significant cost in the usual case. Overlapping access
scopes are unusual. A single CFG walk within the original extended
lifetime is normally sufficient. Only the blocks that are not already
LiveOut in the pruned liveness need to be visited. During this walk,
local overlapping access are detected by scanning for end_access
instructions after the last use point. Global overlapping accesses are
detected by checking NonLocalAccessBlockAnalysis. This avoids scanning
instructions in the common case. NonLocalAccessBlockAnalysis is a
trivial analysis that caches the rare occurence of nonlocal access
scopes. The analysis itself is a single linear scan over the
instruction stream. This analysis can be preserved across most
transformations and I expect it to be used to speed up other
optimizations related to access marker.
When an overlapping access is detected, pruned liveness is simply
extended to include the end_access as a new use point. Extending the
lifetime is iterative, but with each iteration, blocks that are now
marked LiveOut no longer need to be visited. Furthermore, interleaved
accessed scopes are not expected to happen in practice.
There are a bunch of optimizations in SILCombine where we try to fold an
ownership forwarding instruction A into another ownership forwarding instruction
B without deleting A. Consider the upcasts in the example below:
```
%0 = upcast %x : $X->Y
%1 = upcast %0 : $Y->Z
```
These sorts of optimizations fold the first instruction into the second like so:
```
%0 = upcast %x : $X->Y
%1 = upcast %x : $X->Z
```
This creates a problem when we are dealing with owned values since we have just
introduced two consumes for %x. To work around this, we have two options:
1. Introduce extra copies.
2. We recognize the situations where we can guarantee that we can delete the
first upcast.
The first choice I believe is not a choice since breaking a forwarding chain of
ownership in favor of extra copies is a less canonical form. That leaves us with
the second form. What are the necessary/sufficient conditions for deleting the
first upcast. Simply it is that the upcast cannot have any non-debug,
non-consuming uses! In such a case, we know that along all paths through the
program the value has exactly one non-debug use, one of its consuming uses. If
when optimizing upcasts we could recognize that pattern, duplicate the inst
along paths not through our 2nd upcast and thus delete the original upcast
fixing the ownership error!
While this is all nice and good there is a problem with this: it doesn't
scale. As I was writing a few optimizations like this I began to note that I had
to write different versions of this same helper for many of the visitors (they
generally varied by how many forwarding instructions they looked through).
As I pondered the above, I chatted a bit with @atrick and during our
conversation, we both realized that it is much easier to solve this problem in
one block and that the condition above would allow us to sink these instructiosn
into the same block and thus if we could check for this condition and
canonicialize the IR to sink these instructions before we visiting, we could use
a single helper to handle all of these cases.
The only operational change here is that I needed to be able to grab the module
from the SILValue so I could see if we were in Raw SIL or not. I realized the
only case where we could not get the module is from SILUndef and at this point
in the code we know we are going to bail already for SILUndef. This is because
we already know our new value doesn't have OwnershipKind::None and we don't
replace OwnershipKind::None things with non-OwnershipKind::None things since I
haven't implemented support for that corner case yet (but will with time).
Once I realized the previous paragraph, I was able to add support without issue.
Given an Operand *op, this API executes op->set(newSILValue) except that:
1. If the user of op is an end scope, this API no-opts. This API is only used in
contexts where we are rewriting uses and are not interesting in end scope
instructions since we are moving uses from one scope to another scope.
2. If the user of op is not an end scope, but is a lifetime ending use of
op->get(), we insert a destroy_value|end_borrow as appropriate on op->get()
to ensure op->get()'s lifetime is still ended. We assume that if
op->getUser() is lifetime ending, that our caller has ensured that we can end
newValue's lifetime.
This is a low level API already being used in multiple places besides
InstSimplify (e.x.: Utils/OwnershipOptUtils), so it makes sense to move it into
InstOptUtil.