There isn't a clean cut point here, so switch
GenericSpecializationInformation from SubstitutionList to
SubstitutionMap and carry along dual SubstitutionMap/SubstitutionList
representations for a small part of ReabstractionInfo.
This functionality is really specific to FunctionSignatureOpts. It really
doesn't make sense to have it as a utils until it becomes more general or we
need it in multiple places.
NFC.
rdar://38196046
An interprocedural analysis pass that summarizes the dynamically
enforced formal accesses within a function. These summaries will be
used by a new AccessEnforcementOpts pass to locally fold access scopes
and remove dynamic checks based on whole module analysis.
I am going to be adding logic here to enable apple/swift#1550 to be completed.
The rename makes sense due to precedent from LLVM's codegen prepare and also
since I am going to be expanding what the pass is doing beyond just "cleaning
up". It is really a grab bag pass for performing simple transformations that we
do not want to pollute IRGen's logic with.
https://github.com/apple/swift/pull/15502
rdar://39335800
Make this a generic analysis so that it can be used to analyze any
kind of function effect.
FunctionSideEffect becomes a trivial specialization of the analysis.
The immediate need for this is to introduce an new
AccessedStorageAnalysis, although I foresee it as a generally very
useful utility. This way, new kinds of function effects can be
computed without adding any complexity or compile time to
FunctionSideEffects. We have the flexibility of computing different
kinds of function effects at different points in the pipeline.
In the case of AccessedStorageAnalysis, it will compute both
FunctionSideEffects and FunctionAccessedStorage in the same pass by
implementing a simple wrapper on top of FunctionEffects.
This cleanup reflects my feeling that nested classes make the code
extremely unreadable unless they are very small and either private or
only used directly via its parent class. It's easier to see how these
classes compose with a flat type system.
In addition to enabling new kinds of function effects analyses, I
think this makes the implementation of side effect analysis easier to
understand by separating concerns.
As a first step to getting mandatory inlining out of the business
of 'linking' (walking the function graph and deserializing all
referenced functions), add a new optimizer pass which links
everything in the mandatory pipeline.
For now this is mostly NFC, except it regresses an optimization
I made recently by linking in bodies of methods of deserialized
vtables eagerly. This will be addressed in upcoming patches.
As a first step to getting mandatory inlining out of the business
of 'linking' (walking the function graph and deserializing all
referenced functions), add a new optimizer pass which links
everything in the mandatory pipeline.
For now this is mostly NFC, except it regresses an optimization
I made recently by linking in bodies of methods of deserialized
vtables eagerly. This will be addressed in upcoming patches.
To replace the code in DI and eventually remove PostponedCleanup in a
follow-up.
When SILGen emits ``convert_escape_to_noescape [not_guaranteed]
%operand`` instructions it assumes that a later SIL pass (this pass)
comes along and inserts retain_value/release_value instructions such that
the lifetime of the operand for the duration of the trivial closure
result.
This commit introduces the pass but does not yet use it.
The EscapeAnalysis:canEscapeTo function was actually broken, because it did not detect all escapes of a reference/pointer.
I completely replaced the implementation with the correct one (canObjectOrContentEscapeTo) and removed the now obsolete canObjectOrContentEscapeTo.
Fixes a miscompile.
rdar://problem/39161309
It was only used in a few tests. Those tests now use -emit-sil instead
of -emit-silgen, with some functions marked @_transparent and a few
CHECK: lines changed now that the mandatory optimizations get to run.
I am getting rid of FunctionSignatureOptUtils. It is only used by
FunctionSignatureOpts, so it should either be a local utility file whose header
lives in ./lib or integrated into FunctionSignatureOpts. Beyond this utility
function (which seems like a generally useful thing that should be in
DebugUtils), the only other thing left in FunctionSignatureOptUtils is part of
the heuristic of FunctionSignatureOpts. It should really be in that file.
rdar://38196046
Add a new warning that detects when a function will call itself
recursively on all code paths. Attempts to invoke functions like this
may cause unbounded stack growth at least or undefined behavior in the
worst cases.
The detection code is implemented as DFS for a reachable exit path in
a given SILFunction.
The devirtualizer performs two optimizations:
- If a value is known to have an exact class type, ie it is the result of an alloc_ref, we can devirtualize calls of *non-final* methods, because we know we’re calling that specific method and not an override.
- If a method is known to be “effectively final” (it is not open, and there are no overrides inside the module) we can devirtualize it.
However the second optimization needs to be disabled if a function is inlinable (F->getResilienceExpansion() == ResilienceExpansion::Minimal).
We want as few module passes as possible.
Function passes allow the PassManager to do its job.
e.g. it can filter certain functions that should not be applied to the
current pipeline. This will result in less work in the pass itself and
fewer pass manager related bugs.
Function passes are easier to understand and debug in the context of the
pipeline. Things like PrettyStackTrace are handled automatically.
Bisecting functionality is builtin.
Function passes are more compatible in general with inter-procedural
analysis.
Function passes are more efficient.
A single module pass in the middle of the pipeline destroys the benefit
of the rest of the pipeline uses function passes.
Create helpers in InstructionUtils.h wherever we need a guarantee that the diagnostics cover the same patterns as the verifier. Eventually this will be called from both SILVerifier and the diagnostic pass:
- findAccessedAddressBase
- isPossibleFormalAccessBase
- isPartialApplyOfReabstractionThunk
- findClosureForAppliedArg
- visitAccessedAddress
Add partial_apply verification assert.
This applies the normal "find a closure" logic inside the "find all partial_apply uses" verification. Making the verifier round-trip ensures that we don't have holes in exclusivity enforcement related to this logic.
We run GlobalOpt multiple times in the pass pipeline but in some cases object outlining shouldn't be done too early.
Having it done in a separate pass enables to run it independently from GlobalOpt.
We run GlobalOpt multiple times in the pass pipeline but in some cases object outlining shouldn't be done too early.
Having it done in a separate pass enables to run it independently from GlobalOpt.
Local.cpp was ~3k lines of which 1.5k (i.e. 1/2) was the cast optimizer. This
commit extracts the cast optimizer into its own .cpp and .h file. It is large
enough to stand on its own and allows for Local.cpp to return to being a small
group of helper functions.
I am making some changes in this area due to the change in certain function
conventions caused by the +0-normal-arg work. I am just trying to leave the area
a little cleaner than before.
* rename "Name" to "Description" in the pass definition, because it's not really the pass name, but the description of a pass
* remove the getName() from Transforms (which actually returned the description of a pass)
* in debug printing, print the pass ID and not the pass description. It makes it easier to correlate the debug output to the actual pass implementation.
* remove the iteration numbering in the pass manager, because we only run a single iteration anyway.