Avoid constructing tasks with `-Xcc` options that references clang
CASOptions. This is going to make the cache hit/miss to be dependent on
CAS location/configuraitons.
Instead, only give swift CASOptions to constructed tasks and propagate
the configurations to underlying clang importer.
rdar://132255889
To better investigate reports of an infinite recursion in `hasPointerInSubobjects`, let's add a pretty stack trace entry to get more readable crash reports.
rdar://131366982
The decision to exclude `-Xcc -D` options from swift module hash
actually doesn't help to solve the problem. It wouldn't reduce the
module variants (or the number of swiftmodule build commands) because
the command-line also encodes all the clang PCM dependencies that do get
affected by `-Xcc` flags.
To avoid the false sharing and the nondeterministic build products,
include most of the `-Xcc` flags, except include search path, into swift
module hash.
rdar://132046247
This change is necessary to differentiate between C++ const and non-const types in Swift.
For instance, `const int` and `int` would both be printed as `CInt` in Swift.
After this change, `const int` is stored as `CInt_const`
- when compiling embedded cross compile target standard libraries, include AVR
- add 16-bit pointer as a conditional compilation condition and get the void pointer size right for gyb sources
- attempt to fix clang importer not importing __swift_intptr_t correctly on 16 bit platforms
- changed the unit test target to avr-none-none-elf to match the cmake build
[AVR] got the standard library compiling in a somewhat restricted form:
General
- updated the Embedded Runtime
- tweaked CTypes.swift to fix clang import on 16 bit platforms
Strings
- as discussed in https://forums.swift.org/t/stringguts-stringobject-internals-how-to-layout-on-16-bit-platforms/73130, I went for just using the same basic layout in 16 bit as 32 bit but with 16 bit pointers/ints... the conversation is ongoing, I think something more efficient is possible but at least this compiles and will probably work (inefficiently)
Unicode
- the huge arrays of unicode stuff in UnicodeStubs would not compile, so I skipped it for AVR for now.
Synchronization
- disabled building the Synchronization library on AVR for now. It's arguable if it adds value on this platform anyway.
Control enforcement of member import visibility requirements via a new option,
instead of piggy-backing on the existing IgnoreAccessControl option. Adopt the
option when doing fallback lookups for unviable members so that the compiler
can diagnose the reason that a member is inaccessible more reliably.
Previously, with MemberImportVisibility enabled decls with the package access
level could be mis-diagnosed as inaccessible due to their access level when
really they were inaccessible due to a missing import.
Resolves rdar://131501862.
Conflicts:
- `test/Interop/Cxx/class/method/methods-this-and-indirect-return-irgen-itanium.swift`
previously fixed on rebranch, now fixed on main (slightly differently).
When the swiftmodule is built with different clang importer arguments,
they can have the same module hash, causing them to be wrongly re-used even
they contains different interfaces. Add ReducedExtraArgs to the module hash to
disambiguate them.
However, some Xcc arguments, most commonly `-D` options do not affect the
swiftmodule being generated. Do not pass `-Xcc -DARGS` to swift
interface compilation to reduce the amount of module variants in the
build.
rdar://131408266
This introduces a secondary flag `-sysroot` for the non-Darwin targets,
primarily Unicies. The intention here is to support a split `-sdk`,
`-sysroot` model where the `-sdk` parameter provides the Swift "SDK"
which augments the native platform's C sysroot which is indicated as
`-sysroot`. For the case of Android, this would allow us to provide a
path to the NDK sysroot and the Swift SDK allowing us to cross-compile
Android binaries from Windows.
`cast<CustomAttr>` never returns nullptr, it either returns a non-null `CustomAttr*` or traps. This if condition was triggering a clang-tidy warning, since it is redundant.
If a C++ `struct Base` declares a method with a Clang attribute that Swift is able to import, and `struct Derived` inherits from `Base`, the method should get cloned from `Base` to `Derived` with its attributes.
Previously we were only cloning one attribute at most due to a bug in `cloneImportedAttributes`. DeclAttributes is an intrusively linked list, and it was being made invalid while iterating over it: `otherDecl->getAttrs().add(attrs)` iterates over the list and calls `otherDecl->add(eachElement)`, which invalidates the iterator after the first iteration.