This teaches Swift to rebuild the CxxStdlib overlay module from its interface when using a C++ standard library that is not the platform default, specifically libc++ on Linux.
rdar://138838506
When explicitly asked not to load the C++ standard library, Swift should not emit warnings for missing libstdc++.
This fixes a compiler warning when building the Cxx module on Linux.
We only add conditional annotations because those do not break backward
compatibility (we might import span and similar view types as
non-escapable in the future). We inject these annotations in the
importer to make sure we have consistent behavior acress the different
standard library implementations. Once we can ship APINotes for the STL
and we have conditional escapability support in APINotes we can migrate
to that solution. But it is not possible as of today and Clang already
has precedent of injecting information for the STL with lifetimebound.
rdar://139065558
Since we can't do a proper "deep" clone of expression nodes, cloning
such a CustomAttr is necessarily shallow. In such cases, don't cache
the swift_attr source files at all, so we get fresh attribute nodes
for each such usage.
In rare scenarios, Swift was emitting diagnostics that looked like this:
```
warning: 'import_owned' swift attribute ignored on type 'basic_string': type is not copyable or destructible
```
This change makes sure the compiler does not emit these (incorrect) warnings. See the inline comment for more details.
DynamicRangePointerType and ValueTerminatedType are new Clang
types for -fbounds-safety, annotated with the 'ended_by' and the
'terminated_by' attributes. This adds visitors for these types in
ClangImporter so Swift still builds with Clang that has these new
types.
Swift compiler can try to import clang modules which might fail to load.
In this case, the clang diagnostic engine is reset to ignore the errors,
but the hard reset also clears out the states, including the diagnostics
options and current states. This will affect the future clang module
imports and diagnostics. Use a soft reset that only clears the errors
but not the other states.
rdar://139723218
Many existing C APIs for retaining references, including Apple's own, return
the reference. Support this pattern, along with the existing void return
signature, with when importing reference types from C++.
FunctionRefKind was originally designed to represent
the handling needed for argument labels on function
references, in which the unapplied and compound cases
are effectively the same. However it has since been
adopted in a bunch of other places where the
spelling of the function reference is entirely
orthogonal to the application level.
Split out the application level from the
"is compound" bit. Should be NFC. I've left some
FIXMEs for non-NFC changes that I'll address in a
follow-up.
Unfortunately, importing them as is results in ambiguous call sites.
E.g., std::vector::push_back has overloads for lvalue reference and
rvalue reference and we have no way to distinguish them at the call site
in Swift. To overcome this issue, functions with rvalue reference
parameters are imported with 'consuming:' argument labels.
Note that, in general, move only types and consuming is not properly
supported in Swift yet. We do not invoke the dtor for the moved-from
objects. This is a preexisting problem that can be observed with move
only types before this PR, so the fix will be done in a separate PR.
Fortunately, for most types, the moved-from objects do not require
additional cleanups.
rdar://125816354
The renamed decl is now stored exclusively in the split request evaluator
storage, which is more efficient since most availability attributes do not
specify a renamed decl.
Non-escapable types are now enabled by default. Use the new lifetime
dependence feature flag to gate interpreting lifetime annotations on the
C++ side and add tests to make sure we get the expected diagnostics when
the feaature flag is off.
Fixes an issue where parent type wasn't set for qualified ObjC
pointers which leads to crashes during Sema because non-pointer
uses are imported correctly.
Resolves: rdar://102564592
Rather than exposing an `addFile` member on
ModuleDecl, have the `create` members take a
lambda that populates the files for the module.
Once module construction has finished, the files
are immutable.
The Clang importer was directly calling into the parser to parse the
attribute (or modifier) within swift_attr. Aside from being gross, this
isn't possible with ASTGen.
Instead, teach ParseSourceFileRequest to deal with modifiers in the
same way that the Clang importer was hardcoding, and have the Clang
importer pull the attributes/modifiers off of the "missing"
declaration introduced by the request.
One benefit of this approach is that we're only parsing each
swift_attr source buffer once, then cloning the attributes each time
it's used, so we should be doing less work overall.
Fixes rdar://139119159.
This reverts commit 3066bd6919.
This re-lands a change after it got reverted because of a regression in the build of SwiftCompilerSources.
rdar://136838485
This PR adds a variadic macro that builds a SwiftAttr string containing
the names of the template type parameters that need to be escapable for
the type to be considered escapable. It also adds logic to interpret
this annotation.
rdar://139065437
Introduce a number of fixes to allow us to fully use declarations that
are produced by applying a peer macro to an imported declarations.
These changes include:
* Ensuring that we have the right set of imports in the source file
containing the macro expansion, because it depends only on the module
it comes from
* Ensuring that name lookup looks in that file even when the
DeclContext hierarchy doesn't contain the source file (because it's
based on the Clang module structure)
Expand testing to be sure that we're getting the right calls,
diagnostics, and generated IR symbols.