This library uses GenericMetadataBuilder with a ReaderWriter that can read data and resolve pointers from MachO files, and emit a JSON representation of a dylib containing the built metadata.
We use LLVM's binary file readers to parse the MachO files and resolve fixups so we can follow pointers. This code is somewhat MachO specific, but could be generalized to other formats that LLVM supports.
rdar://116592577
ASL is deprecated in macOS 10.12. It may be time to transition to os_log now
that deployment targets have been raised to 10.12, but until that project
starts these warnings are just pollution.
Filed rdar://121066531 to track adoption of `os_log()` if appropriate.
rdar://119329771
This layout allows adding pre-specializations for trivial types that have a different size, but the same stride. This is especially useful for collections, where the stride is the important factor.
Function body macros allow one to introduce a function body for a
particular function, either providing a body for a function that
doesn't have one, or wholesale replacing the body of a function that
was written with a new one.
Yet more preprocessor metaprogramming to eliminate per-macro-role boilerplate
in the compiler. This time, focused on mangling, demangling, and remangling
of the accessor macro roles.
Using symbolic references instead of a text based mangling avoids the
expensive type descriptor scan when objective c protocols are requested.
rdar://111536582
There are certainly more such issues in this code, but this is
one that was recently reported.
While here, re-enable some disabled test cases that currently pass.
Resolves rdar://104671103
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
The demangler already has an error mechanism to report if demangling
failed. Add null pointer checks before every access in
Demangle::getUnspecialized, and return an error if the child doesn't
exist.
rdar://110141007
Macro expansions are currently written to disk using the mangled name of
the macro. Do not use operators that only differ in case-sensitivity to
avoid issues on case-insensitive filesystems.
Resolves rdar://109371653.
The mangling of attached macro expansions based on the declaration to
which they are attached requires semantic information (specifically,
the interface type of that declaration) that caused cyclic
dependencies during type checking. Replace the mangling with a
less-complete mangling that only requires syntactic information from
the declaration, i.e., the name of the declaration to which the macro
was attached.
This eliminates reference cycles that occur with attached macros that
produce arbitrary names.
Add a private discriminator to the mangling of an outermost-private `MacroExpansionDecl` so that declaration macros in different files won't have colliding macro expansion buffer names.
rdar://107462515
We clear the NodeFactory to prevent unbounded buildup of allocated memory, but this is done too eagerly. In particular, normalizeReflectionName can end up clearing the factory while the calling code is still using nodes that were allocated from it.
To keep peak memory usage low while avoiding this problem, we introduce a checkpoint mechanism in NodeFactory. A checkpoint can be pushed and then subsequently popped. When a checkpoint is popped, only the nodes allocated since the checkpoint was pushed are invalidated and the memory reclaimed. This allows us to quickly clear short-lived nodes like those created in normalizeReflectionName, while preserving longer-lived nodes used in code calling it. Uses of clearNodeFactory are replaced with this checkpoint mechanism.
rdar://106547092
We never updated the mangling tree to model existential types, and
NodePrinter still prints 'any P.Type' as 'P.Type' and '(any P).Type'
as 'P.Protocol'.
However, constrained existentials always printed as 'any P',
unfortunately isSimpleType() returned true and isExistentialType()
returned false, so 'any (P<Int>.Type)' and '(any P<Int>).Type' both
printed as 'any P<Int>.Type'.
Changing isSimpleType() to return false fixes this; now we print
'any (P<Int>.Type)' as 'any P<Int>.Type' and '(any P<Int>).Type'
as '(any P<Int>).Type'.
This executable is intended to be installed in the toolchain and act as
an executable compiler plugin just like other 'macro' plugins.
This plugin server has an optional method 'loadPluginLibrary' that
dynamically loads dylib plugins.
The compiler has a newly added option '-external-plugin-path'. This
option receives a pair of the plugin library search path (just like
'-plugin-path') and the corresponding "plugin server" path, separated
by '#'. i.e.
-external-plugin-path
<plugin library search path>#<plugin server executable path>
For exmaple, when there's a macro decl:
@freestanding(expression)
macro stringify<T>(T) -> (T, String) =
#externalMacro(module: "BasicMacro", type: "StringifyMacro")
The compiler look for 'libBasicMacro.dylib' in '-plugin-path' paths,
if not found, it falls back to '-external-plugin-path' and tries to find
'libBasicMacro.dylib' in them. If it's found, the "plugin server" path
is launched just like an executable plugin, then 'loadPluginLibrary'
method is invoked via IPC, which 'dlopen' the library path in the plugin
server. At the actual macro expansion, the mangled name for
'BasicMacro.StringifyMacro' is used to resolve the macro just like
dylib plugins in the compiler.
This is useful for
* Isolating the plugin process, so the plugin crashes doesn't result
the compiler crash
* Being able to use library plugins linked with other `swift-syntax`
versions
rdar://105104850
* [Executors][Distributed] custom executors for distributed actor
* harden ordering guarantees of synthesised fields
* the issue was that a non-default actor must implement the is remote check differently
* NonDefaultDistributedActor to complete support and remote flag handling
* invoke nonDefaultDistributedActorInitialize when necessary in SILGen
* refactor inline assertion into method
* cleanup
* [Executors][Distributed] Update module version for NonDefaultDistributedActor
* Minor docs cleanup
* we solved those fixme's
* add mangling test for non-def-dist-actor
If there's a mismatch between the arguments we match and the arguments we actually have, we can end up indexing off the end of the argumentTypeNames vector. This can happen when an argument has a dependent generic type. Add a bounds check and print <unknown> when we're out of bounds to avoid crashing.
For correctness, we should match generic dependent types and add them to the arguments array, but we'll fix the crashes first.
rdar://104438524
Extend the name mangling scheme for macro expansions to cover attached
macros, and use that scheme for the names of macro expansions buffers.
Finishes rdar://104038303, stabilizing file/buffer names for macro
expansion buffers.
Use the name mangling scheme we've devised for macro expansions to
back the implementation of the macro expansion context's
`getUniqueName` operation. This way, we guarantee that the names
provided by macro expansions don't conflict, as well as making them
demangleable so we can determine what introduced the names.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.