Filter name for completion item is always used. Also, for cached items,
they are used multiple times for filtering. So precomputing and caching
it improves performance.
rdar://84036006
Convert 'ContextFreeCodeCompletionResult' constructor overloads to
'create()' factory methods. This is the consistent interface with
'CodeCompletionString'. NFC
[CodeCompletion] Make ExpectedTypeContext a class with explicit getters/setters
This simplifies debugging because you can break when the possible types are set and you can also search for references to `setPossibleType` to figure out where the expected types are being set.
There was a recent change to error early if the stdlib couldn't be
loaded when semantic functionality is required. Since
`ide::initCompilerInvocation` was ignoring the given `Action` and just
setting to `Typecheck` instead, this would cause an error even if
semantic functionality *wasn't* required.
Resolves rdar://88968608.
The distributed case is distinguishable from the non-distributed case
based on the actor type itself for those rare cases where we care. The
vast majority of code is simplified by treating this identically to
`ActorInstance`.
Clients can explicitly ask for the opened existential type on the archetype's generic environment,
or use `getExistentialType` to obtain a specific archetype's upper bounds.
This allows makes the distinction between cachable and non-cachable properties cleaner and allows us to more easily compute contextual information (like type relations) for cached items later.
LLVM arguments processing is a process global state. At this point,
there's no way to localize it to a CompilerInstance. For now, ignore any
LLVM arguemnts, so options from another compilation doesn't affect other
compilations.
rdar://86809003
Opened archetypes can be created in the constraint system, and the
existential type it wraps can contain type variables. This can happen
when the existential type is inferred through a typealias inside a
generic type, and a member reference whose base is the opened existential
gets bound before binding the generic arguments of the parent type.
However, simplifying opened archetypes to replace type variables is
not yet supported, which leads to type variables escaping the constraint
system. We can support cases where the underlying existential type doesn't
depend on the type variables by canonicalizing it when opening the
existential. Cases where the underlying type requires resolved generic
arguments are still unsupported for now.
Previously the code completion methods just returned an `ArrayRef` that pointed into the result sink that contained the results but no effort was made to actually keep that that result sink alive, e.g. when transforming results in `transformAndForwardResults`.
Instead, return the `CodeCompletionResultSink` from the code compleiton methods now and adopt that sink from the inner results created in `transformAndForwardResults`.
Only declarations in the same module as synthesized extension's target
are placed within a synthesized extension. We should thus not add
"::SYNTHESIZED::" to the USR if the given declaration is in a different
and.
As an example, `Foundation` adds a method `components(separatedBy:)` to
`String` through an extension on `StringProtocol`. But since it is
within `Foundation` and not `Swift` it will *not* be in a synthesized
extension of `String` or `StringProtocol`. So it should not have
"::SYNTHESIZED::" added and should also not being in the `String` group.
Resolves rdar://71355632.
Now that arguments are marked up with whether they have a default or
not, clients may not need the extra call (that has no default
arguments). Add an option to allow not adding this item.
Resolves rdar://85526214.