This fixes an assertion failure when building certain projects for arm64e with `-use-clang-function-types` Swift compiler flag:
```
Expected non-null Clang type for @convention(c)/@convention(block) function but found nullptr
```
rdar://121227452
Emit metadata for runtime checks of conformances of associated types to
invertible protocols, e.g., `T.Assoc: Copyable`. This allows us to
correctly handle, e.g., dynamic casting involving conditional
conformances that have such constraints.
The model we use here is to emit an invertible-protocol constraint
that leaves only the specific bit clear in the invertible protocol
set.
Only the non-zero-sized associated values of a type were considered
when determining whether an enum is copyable or was
trivially-destructible, meaning that a zero-sized, noncopyable type
with a `deinit` wouldn't get destroyed. Treat these associated values
as if they were a payload, and centralize the logic for figuring out
these overall aspects of the enum (copyable, trivially-destructible,
bitwise-takable) since the same checks were repeated.
Fixes rdar://118449507.
An empty struct that is noncopyable can nonetheless have a `deinit`, so
it is not trivially destructible. In such cases, embedded them in
another empty struct means that the outer struct should also not be
trivially destructible. Make it so.
They can lower to a set of i64 registers we consider small but exploded
to (manifested as SSA) registers they will cause significant code bloat.
rdar://125265576
Invertible protocols are currently always mangled with `Ri`, followed by
a single letter for each invertible protocol (e.g., `c` and `e` for
`Copyable` and `Escapable`, respectively), followed by the generic
parameter index. However, this requires that we extend the mangling
for any future invertible protocols, which mean they won't be
backward compatible.
Replace this mangling with one that mangles the bit # for the
invertible protocol, e.g., `Ri_` (followed by the generic parameter
index) is bit 0, which is `Copyable`. `Ri0_` (then generic parameter
index) is bit 1, which is `Escapable`. This allows us to round-trip
through mangled names for any invertible protocol, without any
knowledge of what the invertible protocol is, providing forward
compatibility. The same forward compatibility is present in all
metadata and the runtime, allowing us to add more invertible
protocols in the future without updating any of them, and also
allowing backward compatibility.
Only the demangling to human-readable strings maps the bit numbers
back to their names, and there's a fallback printing with just the bit
number when appropriate.
Also generalize the mangling a bit to allow for mangling of invertible
requirements on associated types, e.g., `S.Sequence: ~Copyable`. This
is currently unsupported by the compiler or runtime, but that may
change, and it was easy enough to finish off the mangling work for it.
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.
This fixes an issue where the debug locations for Swift traps were dropped in the produced PDB files, as they were pointing to line 0
I validated this on a sample project using WinDbgx, which can now correctly trap on the same line in multiple places
Form a set of suppressed protocols for a function type based on
the extended flags (where future compilers can start recording
suppressible protocols) and the existing "noescape" bit. Compare
that against the "ignored" suppressible protocol requirements, as we
do for other types.
This involves a behavior change if any client has managed to evade the
static checking for noescape function types, but it's unlikely that
existing code has done so (and it was unsafe anyway).
Introduce metadata and runtime support for describing conformances to
"suppressible" protocols such as `Copyable`. The metadata changes occur
in several different places:
* Context descriptors gain a flag bit to indicate when the type itself has
suppressed one or more suppressible protocols (e.g., it is `~Copyable`).
When the bit is set, the context will have a trailing
`SuppressibleProtocolSet`, a 16-bit bitfield that records one bit for
each suppressed protocol. Types with no suppressed conformances will
leave the bit unset (so the metadata is unchanged), and older runtimes
don't look at the bit, so they will ignore the extra data.
* Generic context descriptors gain a flag bit to indicate when the type
has conditional conformances to suppressible protocols. When set,
there will be trailing metadata containing another
`SuppressibleProtocolSet` (a subset of the one in the main context
descriptor) indicating which suppressible protocols have conditional
conformances, followed by the actual lists of generic requirements
for each of the conditional conformances. Again, if there are no
conditional conformances to suppressible protocols, the bit won't be
set. Old runtimes ignore the bit and any trailing metadata.
* Generic requirements get a new "kind", which provides an ignored
protocol set (another `SuppressibleProtocolSet`) stating which
suppressible protocols should *not* be checked for the subject type
of the generic requirement. For example, this encodes a requirement
like `T: ~Copyable`. These generic requirements can occur anywhere
that there is a generic requirement list, e.g., conditional
conformances and extended existentials. Older runtimes handle unknown
generic requirement kinds by stating that the requirement isn't
satisfied.
Extend the runtime to perform checking of the suppressible
conformances on generic arguments as part of checking generic
requirements. This checking follows the defaults of the language, which
is that every generic argument must conform to each of the suppressible
protocols unless there is an explicit generic requirement that states
which suppressible protocols to ignore. Thus, a generic parameter list
`<T, Y where T: ~Escapable>` will check that `T` is `Copyable` but
not that it is `Escapable`, and check that `U` is both `Copyable` and
`Escapable`. To implement this, we collect the ignored protocol sets
from these suppressed requirements while processing the generic
requirements, then check all of the generic arguments against any
conformances not suppressed.
Answering the actual question "does `X` conform to `Copyable`?" (for
any suppressible protocol) looks at the context descriptor metadata to
answer the question, e.g.,
1. If there is no "suppressed protocol set", then the type conforms.
This covers types that haven't suppressed any conformances, including
all types that predate noncopyable generics.
2. If the suppressed protocol set doesn't contain `Copyable`, then the
type conforms.
3. If the type is generic and has a conditional conformance to
`Copyable`, evaluate the generic requirements for that conditional
conformance to answer whether it conforms.
The procedure above handles the bits of a `SuppressibleProtocolSet`
opaquely, with no mapping down to specific protocols. Therefore, the
same implementation will work even with future suppressible protocols,
including back deployment.
The end result of this is that we can dynamically evaluate conditional
conformances to protocols that depend on conformances to suppressible
protocols.
Implements rdar://123466649.
Fundamentally the problem here is that SILPassManager is creating an IRGenModule
without calling finalize() on it under some circumstances. It would be better to
fix that instead.
rdar://123923517
Specialized types are generic types, or types whose parent is
specialized.
IRGenDebugInfo was previously mistankenly emitting debug info for
nominal specialized types as if they regular nominal types, which caused
problems as that code path does not handle references to generic
parameters.
Rather than materializing the metadata on demand during visitation, only
collect the types that may be required. Finally, materialize everything
that's needed at the end.
We add the `memory(argmem: readwrite)` attribute to swift_task_create,
which means that the call is only allowed to read or write "pointer
operands". LLVM is smart enough to look through obvious ptrtoint
casts, but not to look through integer selects and so on, which is what
we produce when there's an opaque optional operand that feeds into the
builtin. This was causing miscompiles under optimization when using
`@isolated(any)` function types for task creation, since we're not yet
clever enough to fold the function_extract_isolation for a known function
(and of course it's not necessarily a known function anyway).