Explanation: We generate declarations in the C++ interop header with
"unavailable" annotations when we cannot export something to C++. These
declarations can collide with existing names. Previously, there were no
ways to resolve these name collisions. This PR introduces a new
attribute to hide declarations from the interop header.
Issues: rdar://158843666
Original PRs: #82616
Risk: Low, this adds a new, straightforward code path.
Testing: Added a compiler test.
Reviewers: @egorzhdan
This is a common mistake made more common be suggestions of existing diagnostic
that tell users not to use a 'copy' dependency.
Report a diagnostic error rather than crashing the compiler. Fix the diagnostic
output to make sense relative to the source location.
Fixes rdar://154136015 ([nonescapable] compiler assertion with @_lifetime(x: inout x))
(cherry picked from commit 080b68292d)
- Extend `@_inheritActorContext` attribute to support optional `always` modifier.
The new modifier will make closure context isolated even if the parameter is not
captured by the closure.
- Implementation `@_inheritActorContext` attribute validation - it could only be
used on parameter that have `@Sendable` or `sending` and `@isolated(any)` or
`async` function type (downgraded to a warning until future major Swift mode
to avoid source compatibility issues).
- Add a new language feature that guards use of `@_inheritActorContext(always)` in swift interface files
- Update `getLoweredLocalCaptures` to add an entry for isolation parameter implicitly captured by `@_inheritActorContext(always)`
- Update serialization code to store `always` modifier
(cherry picked from commit 04d46760bb)
(cherry picked from commit c050e8f75a)
(cherry picked from commit c0aca5384b)
(cherry picked from commit a4f6d710cf)
(cherry picked from commit 6c911f5d42)
(cherry picked from commit 17b8f7ef12)
SwiftSyntaxParser is already doing this, and we already diagnosed it in Sema anyway, so we’re just moving that diagnostic earlier so the ASTGen testing mode is happy. Also adding compiler tests for it.
Macro-related tests are not included in this commit; they require matching swift-syntax changes which are being negotiated.
Operator function parsing has a heuristics to determine if `<` a part of
the operator name or the generic parameter clause. Handle `let` there
because value generics uses it.
rdar://149556573
(cherry picked from commit 682d2634ba)
The IsolatedConformances feature moves to a normal, supported feature.
Remove all of the experimental-feature flags on test cases and such.
The InferIsolatedConformances feature moves to an upcoming feature for
Swift 7. This should become an adoptable feature, adding "nonisolated"
where needed.
(cherry picked from commit 3380331e7e)
Rather than fixing-up in the parser, adjust the ASTScope logic such
that a `try` element in a SequenceExpr is considered as covering all
elements to the right of it. Cases where this isn't true are invalid,
and will be diagnosed during sequence folding. e.g:
```
0 * try foo() + bar()
_ = try foo() ~~~ bar() // Assuming `~~~` has lower precedence than `=`
```
This ensures we correctly handle `try` in assignment sequences, and
allows ASTGen to get the behavior for free.
rdar://132872235
* [CS] Decline to handle InlineArray in shrink
Previously we would try the contextual type `(<int>, <element>)`,
which is wrong. Given we want to eliminate shrink, let's just bail.
* [Sema] Sink `ValueMatchVisitor` into `applyUnboundGenericArguments`
Make sure it's called for sugar code paths too. Also let's just always
run it since it should be a pretty cheap check.
* [Sema] Diagnose passing integer to non-integer type parameter
This was previously missed, though would have been diagnosed later
as a requirement failure.
* [Parse] Split up `canParseType`
While here, address the FIXME in `canParseTypeSimpleOrComposition`
and only check to see if we can parse a type-simple, including
`each`, `some`, and `any` for better recovery.
* Introduce type sugar for InlineArray
Parse e.g `[3 x Int]` as type sugar for InlineArray. Gated behind
an experimental feature flag for now.
Parameters of generic type need to be treated as potentially
addressable-for-dependencies, but we don't want callers using the generic
function with concrete types that are known not to be addressable-for-
dependencies to be overconstrained. In SILFunctionType lowering, lower
these dependencies distinctly as conditionally addressable, meaning that
the dependency on an argument depends on whether the concrete type of
that argument is (potentially) addressable-for-dependencies or not.