When rewriting uses of a noncopyable value, the move-only checker failed to take into account
the scope of borrowing uses when establishing the final lifetimes of values. One way this
manifested was when borrowed values get reabstracted from value to in-memory representations,
using a store_borrow instruction, the lifetime of the original borrow would be ended immediately
after the store_borrow begins rather than after the matching end_borrow. Fix this by, first,
changing `store_borrow` to be treated as a borrowing use of its source rather than an
interior-pointer use; this should be more accurate overall since `store_borrow` borrows the
entire source value for a well-scoped duration balanced by `end_borrow` instructions. That done,
change MoveOnlyBorrowToDestructureUtils so that when it sees a borrow use, it ends the borrow
at the end(s) of the use's borrow scope, instead of immediately after the beginning of the use.
In the C++ sources it is slightly more convenient to dump to stderr than
to print to stdout, but it is rather more unsightly to print to stderr
from the Swift sources. Switch to stdout. Also allows the dump
functions to be marked debug only.
Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.
This instruction was given forwarding ownership in the original OSSA
implementation. That will obviously lead to memory leaks. Remove
ownership from this instruction and verify that it is never used for
non-trivial types.
At the cost of adding an unsafe bitcast implementation detail,
simplified the code involved to register a new FunctionTest when adding
one.
Also simplifies how Swift native `FunctionTest`s are registered with the
C++ registry.
Now, the to-be-executed thin closure for native Swift `FunctionTest`s is
stored under within the swift::test::FunctionTest instance corresponding
to it. Because its type isn't representable in C++, `void *` is used
instead. When the FunctionTest is invoked, a thunk is called which
takes the actual test function and bridged versions of the arguments.
That thunk unwraps the arguments, casts the stored function to the
appropriate type, and invokes it.
Thanks to Andrew Trick for the idea.
Not every block in a region which begins with the non-lifetime-ending
boundary of a value and ending with unreachable-terminated blocks has
the value available. If the unreachable-terminated blocks in this
boundary are not available, it is incorrect to insert destroys of the
value in them: it is an overconsume on some paths. Previously,
however, destroys were simply being inserted at the unreachable.
Here, this is fixed by finding the boundary of availability within that
region and inserting destroys before the terminators of the blocks on
that boundary.
rdar://116255254
All SILArgument types are "block arguments". There are three kinds:
1. Function arguments
2. Phis
3. Terminator results
In every situation where the source of the block argument matters, we
need to distinguish between these three. Accidentally failing to
handle one of the cases is an perpetual source of compiler
bugs. Attempting to handle both phis and terminator results uniformly
is *always* a bug, especially once OSSA has phi flags. Even when all
cases are handled correctly, the code that deals with data flow across
blocks is incomprehensible without giving each case a type. This
continues to be a massive waste of time literally every time I review
code that involves cross-block control flow.
Unfortunately, we don't have these C++ types yet (nothing big is
blocking that, it just wasn't done). That's manageable because we can
use wrapper types on the Swift side for now. Wrapper types don't
create any more complexity than protocols, but they do sacrifice some
usability in switch cases.
There is no reason for a BlockArgument type. First, a function
argument is a block argument just as much as any other. BlockArgument
provides no useful information beyond Argument. And it is nearly
always a mistake to care about whether a value is a function argument
and not care whether it is a phi or terminator result.
And use it in lifetime maximization.
The preexisting member function updateForUse has been updated to match
PrunedLiveness and gravitate towards lifetimeEnding=false.
For a fixed instruction and bit, if called with lifetimeEnding=true and
then lifetimeEnding=false, the lifetime-ending-ness of the instruction
at the bit will be false; and if it is again called with
lifetimeEnding=true, the lifetime-ending-ness of the instruction at the
bit will remain false.
In contrast the new member function extendToUse does not alter the
lifetime-ending-ness if it is already set. If it is unset, the function
sets the bit to lifetimeEnding=false.
And use it in lifetime extension/maximization.
The new member function differs from updateForUse in that it doesn't
overwrite the old value for lifetime ending associated with the
instruction (calling updateForUse with lifetimeEnding=false overwrites
the flag set by a previous call with lifetimeEnding=true because if an
instruction both consumes and doesn't consume a copy-extended value, the
value must be live after the instruction).
Extracted the new visitUnreachableLifetimeEnds static member of
OSSALifetimeCompletion from the preexisting
endLifetimeAtUnreachableBlocks which now calls through the former.
KeyPath's getter/setter/hash/equals functions have their own calling
convention, which receives generic arguments and embedded indices from a
given KeyPath argument buffer.
The convention was previously implemented by:
1. Accepting an argument buffer as an UnsafeRawPointer and casting it to
indices tuple pointer in SIL.
2. Bind generic arguments info from the given argument buffer while emitting
prologue in IRGen by creating a new forwarding thunk.
This 2-phase lowering approach was not ideal, as it blocked KeyPath
projection optimization [^1], and also required having a target arch
specific signature lowering logic in SIL-level [^2].
This patch centralizes the KeyPath accessor calling convention logic to
IRGen, by introducing `@convention(keypath_accessor_XXX)` convention in
SIL and lowering it in IRGen. This change unblocks the KeyPath projection
optimization while capturing subscript indices, and also makes it easier
to support WebAssembly target.
[^1]: https://github.com/apple/swift/pull/28799
[^2]: https://forums.swift.org/t/wasm-support/16087/21
This instructions marks the point where all let-fields of a class are initialized.
This is important to ensure the correctness of ``ref_element_addr [immutable]`` for let-fields,
because in the initializer of a class, its let-fields are not immutable, yet.
Codegen is the same, but `begin_dealloc_ref` consumes the operand and produces a new SSA value.
This cleanly splits the liferange to the region before and within the destructor of a class.