I need this today to add the implicit isolated parameter... but I can imagine us
adding more implicit parameters in the future, so it makes sense to formalize it
so it is easier to do in the future.
Fixes a correctness issue with unsafe addressors: `unsafeAddress` and
`unsafeMutableAddress`. Previously, the resulting `Unsafe[Mutable]Pointer` did
not depend on `self`, meaning that the compiler is allowed to destroy `self`
before any uses of the pointer. This happens to be valid for
`UnsafePointer.pointee` because, in that case, `self` does not have a lifetime
anyway; the correctness burden was on the programmer to use
`withExtendedLifetime` around all uses of `self`.
Now, unsafe addressors can be used for arbitrary `Self` types.
This also enables lifetime dependence diagnostics when the addressor points to a
`~Escapable` type.
Addressors can now be used as an implementation of borrowed properties.
In non-strict concurrency mode when `@preconcurrency` declarations
are involved `any Sendable` should be treated as `Any` in generic
argument positions to support passing types that (partially) adopted
concurrency annotations to types that haven't yet done so.
Many APIs using nonescapable types would like to vend interior pointers to their
parameter bindings, but this isn't normally always possible because of representation
changes the caller may do around the call, such as moving the value in or out of memory,
bridging or reabstracting it, etc. `@_addressable` forces the corresponding parameter
to be passed indirectly in memory, in its maximally-abstracted representation.
[TODO] If return values have a lifetime dependency on this parameter, the caller must
keep this in-memory representation alive for the duration of the dependent value's
lifetime.
I also want to extend it and did not want to have to copy/paste this code into
multiple places.
The small test tweak occurs since I changed the initializer SILGen emission code
to set the declref field of SILFunctions to the actual decl ref which we did not
before. So we got a more specific diagnostic.
If the conformance generic signature fixes all generic parameters,
F.getForwardingSubstitutionMap() is empty. Instead, map the
replacement types of the substitution map into the generic
environment earlier, before we strip off a fully-concrete generic
signature.
Previously, they were being parsed as top-level code, which would cause
errors because there are no definitions. Introduce a new
GeneratedSourceInfo kind to mark the purpose of these buffers so the
parser can handle them appropriately.
the async self-isolated actor initializer case.
Fixes rdar://138394497, a bug where we didn't set up isolation correctly for
an async parameter-isolated initializer, but also probably a non-trivial number
of other latent differences between initializers and normal functions.
When a protocol which has a read (or modify) requirement is built with
the CoroutineAccessors feature, it gains a read2 (or modify2,
respectively) requirement. For this to be compatible with binaries
built without the feature, a default implementation for these new
requirements must be provided. Cause these new accessor requirements to
have default implementations by returning `true` from
`doesAccessorHaveBody` when the context is a `ProtocolDecl` and the
relevant availability check passes.
The variable `storage` was defined as `nullptr` a couple lines above and
then is check for null, a spurious check. Eliminate that
nullcheck--it's always true.
This ensures that if the block has an @out return value that the return value is
considered to be affected by the actual call of the block. Before b/c we
smuggled the value through a Sendable continuation, we would lose the connection
in between the block and that result.
rdar://131422332
The reason why I am doing this is that the unlike the codegen for checked
continuation, the codegen for unchecked continuation uses a sendable value
instead of Any as the block storage which prevents me from being able to create
a dependency from a non-Sendable @out parameter to the block.
By changing to use Any consistently, we are able to take advantage of Any not
being sendable to properly propagate this information.
When the CoroutineAccessors feature is enabled, `begin_apply`
instructions produce an additional result representing the allocation
done by the callee. Fix a couple of cases where this additional result
was not being handled.
`Builtin.FixedArray<let N: Int, T: ~Copyable & ~Escapable>` has the layout of `N` elements of type `T` laid out
sequentially in memory (with the tail padding of every element occupied by the array). This provides a primitive
on which the standard library `Vector` type can be built.
Instead of doing the pattern parsing in both the
C++ parser and ASTGen, factor out the parsing into
a request that returns the pattern to emit, regex
type, and version. This can then be lazily run
during type-checking.
When its operand has coroutine kind `yield_once_2`, a `begin_apply`
instruction produces an additional value representing the storage
allocated by the callee. This storage must be deallocated by a
`dealloc_stack` on every path out of the function. Like any other stack
allocation, it must obey stack discipline.
Temporarily allow the legacy behavior of allowing caller coroutine
accessors to observe errors (i.e. by executing no code after the yield
if the caller threw an error) behind the
CoroutineAccessorsUnwindOnCallerError flag.
Experience with `_modify`/`_read` has shown that it is never desireable
to cleanup differently based on whether the caller has thrown. Emit an
`end_apply` in either case.
The thunk's parameter needs the @in_guaranteed convention if it's a
const reference parameter. However, that convention wasn't being used
because clang importer was removing the const reference from the
type and SILGen was computing the type of the parameter based on the
type without const reference.
This commit fixes the bug by passing the clang function type to
SILDeclRef so that it can be used to compute the correct thunk type.
This fixes a crash when a closure is passed to a C function taking a
pointer to a function that has a const reference struct parameter.
This recommits e074426 with fixes to
serialization/deserialization of function types. The fixes prevent clang
types of functions from being dropped during serialization.
rdar://131321096
This requires two major changes.
The first is that we need to teach SILGen that the isolation of an initializer
is essentially dynamic (as far as SILGen is concerned) --- that it needs to emit
code in order to get the isolation reference. To make this work, I needed to
refactor how we store the expected executor of a function so that it's not
always a constant value; instead, we'll need to emit code that DI will lower
properly. Fortunately, I can largely build on top of the work that Doug previously
did to support #isolation in these functions. The SIL we emit here around delegating
initializer calls is not ideal --- the breadcrumb hop ends up jumping to the
generic executor, and then DI actually emits the hop to the actor. This is a little
silly, but it's hard to eliminate without special-casing the self-rebinding, which
honestly we should consider rather than the weirdly global handling of that in
SILGen today. The optimizer should eliminate this hop pretty reliably, at least.
The second is that we need to teach DI to handle the pattern of code we get in
delegating initializers, where the builtin actually has to be passed the self var
rather than a class reference. This is because we don't *have* a class reference
that's consistently correct in these cases. This ended up being a fairly
straightforward generalization.
I also taught the hop_to_executor optimizer to skip over the initialization of
the default-actor header; there are a lot of simple cases where we still do emit
the prologue generic-executor hop, but at least the most trivial case is handled.
To do this better, we'd need to teach this bit of the optimizer that the properties
of self can be stored to in an initializer prior to the object having escaped, and
we don't have that information easily at hand, I think.
Fixes rdar://87485045.