Explanation: Unowned result conventions do not work well with OSSA. Retain the
result right after the call when we come out of OSSA so we can treat the
returned value as if it was owned when we do optimizations.
This fix a miscompilation due to the DestroyAddrHoisting pass hoisting destroys
above copies with unowned sources. When the destroyed object was the last
reference to the pointed memory the copy is happening too late resulting in
a use after free.
Issues: rdar://160462854
Original PRs: #84612
Risk: We change where retaining of the unowned return values
happen in the optimization pipeline. It is hard to anticipate all the
possible effects but it should make the optimizer more correct.
Testing: Added a compiler test.
Reviewers: @eeckstein, @atrick
If a guaranteed value is used in a dead-end exit block and the enclosing value is _not_ destroyed in this block, we end up missing the enclosing value as phi-argument after duplicating the loop.
TODO: once we have complete lifetimes we can remove this check again.
rdar://159125605
It is valid to leak a value on paths into dead-end regions.
Specifically, it is valid to leak an `alloc_box`. Thus, "final
releases" in dead-end regions may not destroy the box and consequently
may not release its contents. Therefore it's invalid to lower such final
releases to `dealloc_stack`s, let alone `destroy_addr`s. The in-general
invalidity of that transformation results in miscompiling whenever a box
is leaked and its projected address is used after such final releases.
Fix this by not treating final releases as boundary markers of the
`alloc_box` and not lowering them to `destroy_addr`s and
`dealloc_stack`s.
rdar://158149082
Updates ConsumeOperatorCopyableValuesChecker to identify store_borrow
instructions as a liveness-affecting use so that patterns that would
previously slip through undiagnosed are correctly identified. e.g.
```swift
func use<V>(_ v: borrowing V) {}
func f() {
let a = A()
_ = consume a
use(a) // previously would not be diagnosed
}
```
(cherry picked from commit 754a3007d5)
Specifically for 6.2, we are making optimize hop to executor more conservative
around caller isolation inheriting functions. This means that we are:
1. No longer treating calls to caller isolation inheriting functions as having a
hop in their prologue. In terms of this pass, it means that when determining
dead hop to executors, we no longer think that a caller isolation inheriting
function means that an earlier hop to executor is not required.
2. Treating returns from caller isolation inheriting callees as requiring a
hop. The reason why we are doing this is that we can no longer assume that our
caller will hop after we return.
Post 6.2, there are three main changes we are going to make:
* Forward Dataflow
Caller isolation inheriting functions will no longer be treated as suspension
points meaning that we will be able to propagate hops over them and can assume
that we know the actor that we are on when we enter the function. Practically
this means that trees of calls that involve just nonisolated(nonsending) async
functions will avoid /all/ hop to executor calls since we will be able to
eliminate all of them since the dataflow will just propagate forward from the
entrance that we are already on the actor.
* Backwards Dataflow
A caller isolation inheriting call site will still cause preceding
hop_to_executor functions to be live. This is because we need to ensure that we
are on the caller isolation inheriting actor before we hit the call site. If we
are already on that actor, the hop will be eliminated by the forward pass. But
if the hop has not been eliminated, then the hop must be needed to return us to
the appropriate actor.
We will also keep the behavior that returns from a caller isolation inheriting
function are considered to keep hop to executors alive. If we were able to
propagate to a hop to executor before the return inst with the forward dataflow,
then we know that we are guaranteed to still be on the relevant actor. If the
hop to executor is still there, then we need it to ensure that our caller can
treat the caller isolation inheriting function as a non-suspension point.
rdar://155905383
(cherry picked from commit b3942424c8)
tryJoinIfDestroyConsumingUseInSameBlock replaces a copy with its operand
when there is no use of the copy's operand between the copy's forwarded consuming use
and the copy operand's destroy in the same block. It is illegal to do this transformation
when there is a non-consuming use of the copy operand after the forwarded consuming use of the copy.
The code checking this illegal case was not considerin the case where the consuming use of the copy
was in the same instruction as the non-consuming use of the copy operand.
rdar://154712867
If a function has lifetime dependencies, disable FSO's dead param optimization. Dead params maybe dependency sources and we should not delete them. It is also problematic to dead code params that are not dependency sources, since lifetime dependent sources are stored as indices and deleting dead parameters will require recomputation of these indices.
This makes the code easier to write and also prevents any lifetime issues from a
diagnostic outliving the SmallString due to diagnostic transactions.
(cherry picked from commit 010fa39f31)
Specifically in terms of printing, if NonisolatedNonsendingByDefault is enabled,
we print out things as nonisolated/task-isolated and @concurrent/@concurrent
task-isolated. If said feature is disabled, we print out things as
nonisolated(nonsending)/nonisolated(nonsending) task-isolated and
nonisolated/task-isolated. This ensures in the default case, diagnostics do not
change and we always print out things to match the expected meaning of
nonisolated depending on the mode.
I also updated the tests as appropriate/added some more tests/added to the
SendNonSendable education notes information about this.
(cherry picked from commit 14634b6847)
I am doing this so that I can change how we emit the diagnostics just for
SendNonSendable depending on if NonisolatedNonsendingByDefault is enabled
without touching the rest of the compiler.
This does not actually change any of the actual output though.
(cherry picked from commit 4ce4fc4f95)
We were effectively working around this previously at the SIL level. This caused
us not to obey the semantics of the actual evolution proposal. As an example of
this, in the following, x should not be considered main actor isolated:
```swift
nonisolated(nonsending) func useValue<T>(_ t: T) async {}
@MainActor func test() async {
let x = NS()
await useValue(x)
print(x)
}
```
we should just consider this to be a merge and since useValue does not have any
MainActor isolated parameters, x should not be main actor isolated and we should
not emit an error here.
I also fixed a separate issue where we were allowing for parameters of
nonisolated(nonsending) functions to be passed to @concurrent functions. We
cannot allow for this to happen since the nonisolated(nonsending) parameters
/could/ be actor isolated. Of course, we have lost that static information at
this point so we cannot allow for it. Given that we have the actual dynamic
actor isolation information, we could dynamically allow for the parameters to be
passed... but that is something that is speculative and is definitely outside of
the scope of this patch.
rdar://154139237
(cherry picked from commit c12c99fb73)
Centralize the logic for figuring out the conformances for the various
init_existential* instructions in a SILIsolationInfo static method, and
always go through that when handling "assign" semantics. This way, we
can use CONSTANT_TRANSLATION again for these instructions, or a simpler
decision process between Assign and LookThrough.
The actually undoes a small change made earlier when we stopped looking
through `init_existential_value` instructions. Now we do when there are
no isolated conformances.
Better match the style of SILIsolationInfo by moving the code for determining
SILIsolationInfo from conformances or dynamic casts to existentials into
static `getXYZ` methods on SILIsolationInfo.
Other than adding an assertion regarding disconnected regions, no
intended functionality change.
When we introduce isolation due to a (potential) isolated conformance,
keep track of the protocol to which the conformance could be
introduced. Use this information for two reasons:
1. Downgrade the error to a warning in Swift < 7, because we are newly
diagnosing these
2. Add a note indicating where the isolated conformance could be introduced.
(cherry picked from commit 02c34bb830)
When a conformance becomes part of a value, and that conformance could
potentially be isolated, the value cannot leave that particular
isolation domain. For example, if we perform a runtime lookup for a
conformance to P as part of a dynamic cast `as? any P`, the
conformance to P used in the cast could be isolated. Therefore, it is
not safe to transfer the resulting value to another concurrency domain.
Model this in region analysis by considering whether instructions that
add conformances could end up introducing isolated conformances. In
such cases, merge the regions with either the isolation of the
conformance itself (if known) or with the region of the task (making
them task-isolated). This prevents such values from being sent.
Note that `@concurrent` functions, which never dynamically execute on
an actor, cannot pick up isolated conformances.
Fixes issue #82550 / rdar://154437489
(cherry picked from commit 62770ff2d7)
No update is needed for the values they produce. This pass should
really be refactored not to crash on instructions that aren't explicitly
listed or at least not to compile if not every instruction is listed.
rdar://155059418
In OSSA, the result of an `unchecked_bitwise_cast` must immediately be
copied or `unchecked_bitwise_cast`'d again. In particular, it is not
permitted to borrow it. For example, the result can't be borrowed for
the purpose of performinig additional projections (`struct_extract`,
`tuple_extract`) on the borrowed value. Consequently, we cannot promote
an address if such a promotion would result in such a pattern. That
means we can't promote an address `%addr` which is used like
`struct_element_addr(unchecked_addr_cast(%addr))` or
`tuple_element_addr(unchecked_addr_cast(%addr))`. We can still promote
`unchecked_addr_cast(unchecked_addr_cast(%addr))`.
In ownership-lowered SIL, this doesn't apply and we can still promote
address with such projections.
rdar://153693915
This results in wrong argument/return calling conventions.
First, the method call must be specialized. Only then the call can be de-virtualized.
Usually, it's done in this order anyway, because the `class_method` instruction is located before the `apply`.
But when inlining functions, the order (in the worklist) can be the other way round.
Fixes a compiler crash.
rdar://154631438
Narrowly fix a long-standing bug where destroy_addrs would be hoisted
into read access scopes, leaving the scope as a read despite the fact
that it modifies memory. This is a problem for utilities which expect
access scopes to provide correct summaries. Do this by refusing to fold
into access scopes which are marked `[read]`.
In a follow-up, we can reenable this folding, promoting each access
scope to a modify. Doing so requires checking that there are no access
scopes which overlap with any of the access scopes which would be
promoted to modify.
rdar://154407327
Bail if the closure captures an ObjectiveC block which might _not_ be copied onto the heap, i.e optimized by SimplifyCopyBlock.
We can't do this because the optimization inserts retains+releases for captured arguments.
That's not possible for stack-allocated blocks.
Fixes a mis-compile
rdar://154241245
Handle the presence of mark_dependence instructions after a begin_apply.
Fixes a compiler crash:
"copy of noncopyable typed value. This is a compiler bug. ..."
(cherry picked from commit 7a29d9d8b6)
Extract the special pattern matching logic that is otherwise unrelated to the
check() function. This makes it obvious that the implementation was failing to
set the 'changed' flag whenever needed.
(cherry picked from commit c41715ce8c)
Do not eliminate a mark_dependence on a begin_apply scope even though the token
has a trivial type.
Ideally, token would have a non-trivial Builtin type to avoid special cases.
(only relevant on 6.2)
OSSA lifetime canonicalization can take a very long time in certain
cases in which there are large basic blocks. to mitigate this, add logic
to skip walking the liveness boundary for extending liveness to dead
ends when there aren't any dead ends in the function.
Updates `DeadEndBlocks` with a new `isEmpty` method and cache to
determine if there are any dead-end blocks in a given function.
(cherry picked from commit 1f3f830fc7)