Supporting stores in more places means that more code can be _completely_ devirtualized which also means other optimizations (e.g. inlining) can also happen.
Also, updates tests.
and eliminate dead code. This is meant to be a replacement for the utility:
recursivelyDeleteTriviallyDeadInstructions. The new utility performs more aggresive
dead-code elimination for ownership SIL.
This patch also migrates most non-force-delete uses of
recursivelyDeleteTriviallyDeadInstructions to the new utility.
and migrates one force-delete use of recursivelyDeleteTriviallyDeadInstructions
(in IRGenPrepare) to use the new utility.
We have an optimization in SILCombiner that "inlines" the use of compile-time constant key paths by performing the property access directly instead of calling a runtime function (leading to huge performance gains e.g. for heavy use of @dynamicMemberLookup). However, this optimization previously only supported key paths which solely access stored properties, so computed properties, optional chaining, etc. still had to call a runtime function. This commit generalizes the optimization to support all types of key paths.
ProtocolConformanceRef already has an invalid state. Drop all of the
uses of Optional<ProtocolConformanceRef> and just use
ProtocolConformanceRef::forInvalid() to represent it. Mechanically
translate all of the callers and callsites to use this new
representation.
https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711
This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:
- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
of the function to its concrete implementation. This will allow, for instance, a protocol
witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
to the protocol interface without relying on the pile of hacks that is the `witness_method`
protocol.
- A bool for whether the generic signature of the function is "implied" by the substitutions.
If true, the generic signature isn't really part of the calling convention of the function.
This will allow closure types to distinguish a closure being passed to a generic function, like
`<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
which will make it easier for us to differentiate the representation of those as types, for
instance by giving them different pointer authentication discriminators to harden arm64e
code.
This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.
This does bifurcate some existing APIs:
- SILFunctionType now has two accessors to get its generic signature.
`getSubstGenericSignature` gets the generic signature that is used to apply its
substitution map, if any. `getInvocationGenericSignature` gets the generic signature
used to invoke the function at apply sites. These differ if the generic signature is
implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
and results of the function. They now have two APIs to get that type. `getInterfaceType`
returns the unsubstituted type of the generic interface, and
`getArgumentType`/`getReturnValueType` produce the substituted type that is used at
apply sites.
The optimizer can generate a thin_to_thick_function conversion from a throwing thin to a non-throwing thick function (in case it can prove that the function is actually not throwing).
Therefore, when removing such a conversion from the callee-argument of an apply, we have to check if the new callee (= the argument of the thin_to_thick_function) is a throwing function and set the not-throwing flag in this case.
This fixes a SILVerifier crash.
rdar://problem/56358645
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
With the advent of dynamic_function_ref the actual callee of such a ref
my vary. Optimizations should not assume to know the content of a
function referenced by dynamic_function_ref. Introduce
getReferencedFunctionOrNull which will return null for such function
refs. And getInitialReferencedFunction to return the referenced
function.
Use as appropriate.
rdar://50959798
Handle calling conventions and cleanups in all the places (hopefully).
- when ExistentialSpecializer copies the specialized concrete arg into the
original existential value
- when ExistentialSpecializer generates a think
- when SILCombine substitutes concrete values in place of the opened
existential.
One particularly nasty problem is the existential boxes need to be
destroyed. It is not ok to simply destroy their value. The "leaks"
tool does not catch this problem.
Ownership SIL will make this all much more robust.
Fixes <rdar://problem/50595630> Multiple leaks detected - Swift Perf
If the keypath argument of a keypath access function is a keypath literal instruction, generate the projection inline and remove the access function.
For example, replaces (simplified SIL):
%kp = keypath ... stored_property #Foo.bar
apply %keypath_runtime_function(%root_object, %kp, %addr)
with:
%addr = struct_element_addr %root_object, #Foo.bar
load/store %addr
Currently this only handles stored property patterns.
rdar://problem/36244734
This is a large patch; I couldn't split it up further while still
keeping things working. There are four things being changed at
once here:
- Places that call SILType::isAddressOnly()/isLoadable() now call
the SILFunction overload and not the SILModule one.
- SILFunction's overloads of getTypeLowering() and getLoweredType()
now pass the function's resilience expansion down, instead of
hardcoding ResilienceExpansion::Minimal.
- Various other places with '// FIXME: Expansion' now use a better
resilience expansion.
- A few tests were updated to reflect SILGen's improved code
generation, and some new tests are added to cover more code paths
that previously were uncovered and only manifested themselves as
standard library build failures while I was working on this change.
Optimizing applies that take existential arguments is a complex
process with multiple transformations. If the apply isn't rewritten,
earlier transformations need to be undone.
SILCombine is obviously the wrong place to implement type propagation,
as I point out every time I need to fix it.
Fixes <rdar://problem/49336444> SILCombine infinite loop.
Previously, we based it off of whether or not the original apply had a nothrow
bit. This is incorrect in the case where we added an error result to a function
without an error result. In such a case, we need to /not/ put on the nothrow
bit. This commit generalizes this idea slightly by assuming that if we are asked
to perform this transformation we should just match what the underlying
function_ref (i.e. setting nothrow if the underlying function type has an error
result and not setting nothrow if the underlying function type does not have an
error result).
rdar://47828439
This code was force casting the address of the opened existential to
the lowered SIL type of the known conformance. This is superficially
incorrect because values are stored in existentials with maximal
reabstraction.
Bail on any concrete types that require reabstraction. I don't think
we will hit this currently because there is an earlier check that
prevents optimizing a conformance on a generic types. In theory
someone could add that functionality later for internal generic types
with a single instantiation.
More importantly, we don't want anyone copying this logic and assuming
it's generally correct.
Generalizes the ConcreteExistentialInfo abstraction so it can be used
both by the ExistentialSpecializer and SILCombine, allowing redundant
code in ExistentialSpecializer.cpp to be deleted.
Splits OpenedArchetypeInfo from ConcreteExistentialInfo. Adds a
ConcreteOpenedArchetypeInfo convenience wrapper around them both, for
use wherever we were originally using ConcreteExistentialInfo.
Splits getAddressOfStackInit into getStackInitInst, This is cleaner and
allows both the ExistentialSpecializer and SILCombine to handle more
interesting cases in the future, like unconditional_checked_cast.
Creates utilities, initializeSubstitutionMap, and
initializeConcreteTypeDef to simplify an generalize
ConcreteExistentialInfo.
While rewriting ExistentialSpecializer to use the new
abstraction, I fixed a latent bug in which is was using a SIL
argument index as a function type parameter index (this would
have broken up if/when we decide to enable calls with indirect
results).
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
This allows Swift code to implement a fast path via a protocol type
check as follows:
if let existentialVal = genericVal as? SomeProtocol {
// do something fast.
}
Fixes <rdar://problem/46322928> Failure to devirtualize a protocol
method applied to an opened existential blocks implemention of
DataProtocol.
Note: the approach of devirtualization via backward pattern matching
is fundamentally wrong and will never be fully general. It should be a
forward type propagation.
A SIL argument index was being passed as an AST function type
parameter index. Don't do this.
I also cleaned up the peephole to avoid processing indirect results as
parameter indices, but that part is NFC.
Fixes rdar://45415719 Assertion failed: (Index < Length && "Invalid index!")