Use 'hasAssociatedValues' instead of computing and discarding the
interface type of an enum element decl. This change has specifically not
been made in conditions that use the presence or absence of the
interface type, only conditions that depend on the presence or absence
of associated values in the enum element decl.
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
It is important to de-serialize the devirtualized function (and its callees), especially because we must make sure that all transparent functions are de-serialized.
SILCombine did not do that. But as we have the same optimization in the Devirtualizer, it's not needed to duplicate the code in SILCombine.
The only reason we had this peephole in SILCombine is that the Devirtualizer pass could not handle partial applies.
So with this change the Devirtualizer can now also handle partial applies.
Fixes rdar://problem/30544344 (again, after my first attempt failed)
Storing this separately is unnecessary since we already
serialize the enum element's interface type. Also, this
eliminates one of the few remaining cases where we serialize
archetypes during AST serialization.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
This was already done for getSuccessorBlocks() to distinguish getting successor
blocks from getting the full list of SILSuccessors via getSuccessors(). This
commit just makes all of the successor/predecessor code follow that naming
convention.
Some examples:
getSingleSuccessor() => getSingleSuccessorBlock().
isSuccessor() => isSuccessorBlock().
getPreds() => getPredecessorBlocks().
Really, IMO, we should consider renaming SILSuccessor to a more verbose name so
that it is clear that it is more of an internal detail of SILBasicBlock's
implementation rather than something that one should consider as apart of one's
mental model of the IR when one really wants to be thinking about predecessor
and successor blocks. But that is not what this commit is trying to change, it
is just trying to eliminate a bit of technical debt by making the naming
conventions here consistent.
Today, loads and stores are treated as having @unowned(unsafe) ownership
semantics. This leaves the user to specify ownership changes on the loaded or
stored value independently of the load/store by inserting ARC operations. With
the change to Semantic SIL, this will no longer be true. Instead loads, stores
have ownership semantics that one must reason about such as copy, take, and
trivial.
This change moves us closer to that world by eliminating the default
OwnershipQualification argument from create{Load,Store}. This means that the
compiler developer cannot ignore reasoning about the ownership semantics of the
memory operation that they are creating.
Operationally, this is a NFC change since I have just gone through the compiler
and updated all places where we create loads, stores to pass in the former
default argument ({Load,Store}OwnershipQualifier::Unqualified), to
SILBuilder::create{Load,Store}(...). For now, one can just do that in situations
where one needs to create loads/stores, but over time, I am going to tighten the
semantics up via the verifier.
rdar://28685236
It's the same thing as for alloc_ref: the optional [tail_elems ...] attribute specify the tail elements to allocate.
For details see docs/SIL.rst
This feature is needed so that we can allocate a MangedBuffer with alloc_ref_dynamic.
The ManagedBuffer.create() function uses the dynamic self type to create the buffer instance.
We transform an "alloc_ref_dynamic(metatype @thick $T)" to an "alloc_ref $T"
But in some cases there can be an upcast in-between.
Now we also do "alloc_ref_dynamic(upcast(metatype @thick $Derived) to $Base)" -> "upcast(alloc_ref $Derived) to $Base"
This peephole optimization is needed for the upcoming change of using tail allocated arrays in ManagedBuffer.
When devirtualizing witness method and class method calls, we
transform apply instructions operating on the result of a SIL
witness_method or class_method instruction to direct calls of
a function_ref.
The generic signature of the dynamic call site might not match
the generic signature of the static thunk, so the substitution
list from the dynamic apply instruction cannot be used directly;
instead, we must transform it to a substitution list suitable
for the static thunk.
- With witness methods, the method is called using the protocol
requirement's signature, <Self : P, ...>, however the
witness thunk has a generic signature derived from the
concrete witness.
For example, the requirement might have a signature
<Self : P, T>, where the concrete witness thunk might
have a signature <X, Y>, where the concrete conforming type
is G<X, Y>.
At the call site, we substitute Self := G<X', Y'>; however
to be able to call the witness thunk directly, we need to
form substitutions X := X' and Y := Y'.
- A similar situation occurs with class methods when the
dynamically-dispatched call is performed against a derived
class, but devirtualization actually finds the method on a
base class of the derived class.
The base class may have a different number of generic
parameters than the derived class, either because the
derived class makes some generic parameters of the base
class concrete, or if the derived class introduces new
generic parameters of its own.
In both cases, we need to consider the generic signature of the
dynamic call site (the protocol requirement or the derived
class method) as well as the generic signature of the static
thunk, and carefully remap the substitutions from one form
into another.
Previously the optimizer would implicitly rely on substitutions
being in AllArchetypes order, in particular that concatenating
outer substitutions with inner substitutions makes sense.
This assumption is about to go away, so this patch refactors
the optimizer to use some new abstractions for remapping
substitution lists.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
As there are no instructions left which produce multiple result values, this is a NFC regarding the generated SIL and generated code.
Although this commit is large, most changes are straightforward adoptions to the changes in the ValueBase and SILValue classes.
And use the new project_existential_box to get to the address value.
SILGen now generates a project_existential_box for each alloc_existential_box.
And IRGen re-uses the address value from the alloc_existential_box if the operand of project_existential_box is an alloc_existential_box.
This lets the generated code be the same as before.
Having a separate address and container value returned from alloc_stack is not really needed in SIL.
Even if they differ we have both addresses available during IRGen, because a dealloc_stack is always dominated by the corresponding alloc_stack in the same function.
Although this commit quite large, most changes are trivial. The largest non-trivial change is in IRGenSIL.
This commit is a NFC regarding the generated code. Even the generated SIL is the same (except removed #0, #1 and @local_storage).