`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
There are examples of such functions, which were previously captured by `isPureCall` in the inliner. But the implementation of `isPureCall` was wrong.
With the new (and correct) side effect analysis we need to correctly handle such functions in the inlining heuristic.
The variants are produced by SILGen when opaque values are enabled.
They are necessary because otherwise SILGen would produce
address_to_pointer of values.
They will be lowered by AddressLowering.
This invalidation kind is used when a compute-effects pass changes function effects.
Also, let optimization passes which don't change effects only invalidate the `FunctionBody` and not `Everything`.
Pass a BasicCalleeAnalysis instance to isDeinitBarrier. This enables
LexicalDestroyHoisting to hoist destroys over applies of functions which
are not deinit barriers.
Pass a BasicCalleeAnalysis instance to isDeinitBarrier. This will allow
ShrinkBorrowScope to hoist end_borrows over applies of functions which
are not deinit barriers.
Pass a BasicCalleeAnalysis instance to isDeinitBarrier. This will
enable SSADestroyHoisting to hoist destroy_addrs over applies of
functions that are not themselves deinit barriers.
Added new C++-to-Swift callback for isDeinitBarrier.
And pass it CalleeAnalysis so it can depend on function effects. For
now, the argument is ignored. And, all callers just pass nullptr.
Promoted to API the mayAccessPointer component predicate of
isDeinitBarrier which needs to remain in C++. That predicate will also
depends on function effects. For that reason, it too is now passed a
BasicCalleeAnalysis and is moved into SILOptimizer.
Also, added more conservative versions of isDeinitBarrier and
maySynchronize which will never consider side-effects.
To improve the debugging experience of values whose lifetimes are
canonicalized without compromising the semantics expressed in the source
language, when canonicalizing OSSA lifetimes at Onone, lengthen
lifetimes as much as possible without incurring copies that would be
eliminated at O.
rdar://99618502
to SILBuilder::createUncheckedForwardingCast
It would be disastrous to confuse this utility with a bit cast. A bit
cast always produces an Unowned value which must immediately be copied
to be used. This utility always forwards ownership. It cannot be used
to truncate values.
Also, be careful not to convert "reinterpret cast"
(e.g. Builtin.reinterpretCast) into a "value cast" since ownership
will be incorrect and the reinterpreted types might not have
equivalent layout.
* [SILOptimizer] Add prespecialization for arbitray reference types
* Fix benchmark Package.swift
* Move SimpleArray to utils
* Fix multiple indirect result case
* Remove leftover code from previous attempt
* Fix test after rebase
* Move code to compute type replacements to SpecializedFunction
* Fix ownership when OSSA is enabled
* Fixes after rebase
* Changes after rebasing
* Add feature flag for layout pre-specialization
* Fix pre_specialize-macos.swift
* Add compiler flag to benchmark build
* Fix benchmark SwiftPM flags
Currently the SROA just overwrites already-existing expressions on
variables. When SROA is recursively run on a data structure this leads to
nonsensical expressions such as
type $*Outer, expr op_fragment:#Inner.x
instead of
type $*Outer, expr op_fragment:#Outer.inner op_fragment:#Inner.x
The (nonsensical) LLVM IR generated from this violates some assumptions in LLVM
for example, if a struct has multiple members of the same type, you can end up
with multiple dbg.declare intrinsics claiming to describe the same variable). As
a quick fix, this patch detects this situation and drops the debug info. A
proper fix shouldn't be too difficult to implement though.
rdar://99874371
Previously, when attempting to pattern-match bridged ObjC properties,
there was an assertion about the location of destroy_value instructions
in the code that we were trying to match. Instead, bail in the face of
an unexpected pattern.
rdar://99873905
Instead of checking if the end_borrow is ending the lifetime of the store_borrow of the asi under consideration,
this code was checking if the store_borrow source is the runningValue which is incorrect in cases where a store_borrow
src to another destination gets replaced during mem2reg. This PR fixes the issue.
This is a dedicated instruction for incrementing a
profiler counter, which lowers to the
`llvm.instrprof.increment` intrinsic. This
replaces the builtin instruction that was
previously used, and ensures that its arguments
are statically known. This ensures that SIL
optimization passes do not invalidate the
instruction, fixing some code coverage cases in
`-O`.
rdar://39146527
By using the keyword instead of the function, we actually get a much simpler
implementation since we avoid all of the machinery of SILGenApply. Given that we
are going down that path, I am removing the old builtin implementation since it
is dead code.
The reason why I am removing this now is that in a subsequent commit, I want to
move all of the ownership checking passes to run /before/ mandatory inlining. I
originally placed the passes after mandatory inlining since the function version
of the move keyword was transparent and needing to be inlined before we could
process it. Since we use the keyword now, that is no longer an issue.