The blocksWithReachedTops variable is only ever used while finding
barriers and in a small helper function called at that time. Make it
local to that function and make that helper a lambda in that function.
So that CopyPropagation and other clients can react accordingly, pass
back a list of copy_value instructions that were rewritten by
ShrinkBorrowScope. In CopyPropagation, add each modified copy to the
copy worklist.
Replaced findInnerTransitiveGuaranteeedUsesOfBorrowedValue with
findExtendedUsesOfSimpleBorrowedValue. Starting from a borrowed value,
it finds all extended (i.e., seeing through copies) uses of the borrow
and its projections within the simple (i.e. without considering
reborrowing) borrow scope.
Debug information needs to be preserved at -Onone.
And it should be preserved to a reasonable extend at -O, not
completely thrown away.
This transformation does neither.
The -Onone case is more important. The FIXME explains how that could
be done.
I'm including an example of how to handle the -O case, currently under
a a flag, -sil-load-splitting-debug-info.
This -O support uses debug fragments, which currently crashes when
building SwiftPM's PackageModel module in LLVM's 'X86 Assembly
Printer', llvm::DwarfExpression::addFragmentOffset.
We don't appear to have any verification of debug fragment in either
SIL or LLVM that would catch this. And I haven't been able to reduce
the problem to a small test case.
More bugs related to dead-end blocks and OSSA lifetimes that aren't
well formed because of that.
Independently, I'm working on prohibiting ill-formed OSSA even in the
presence of dead-end blocks. That makes these workarounds unnecessary,
but we urgently need a narrow fix here.
* [Distributed] towards DistributedActorSystem; synthesize the id earlier, since Identifiable.id
* Fix execute signature to what Pavel is working with
* funcs are ok in sil
* fixed lifetime of id in inits
* fix distributed_actor_deinit
* distributed_actor_local
* update more tests
fixing tests
fix TBD test
fix Serialization/distributed
fix irgen test
Fix null pointer crashes
* prevent issues with null func ptrs and fix Distributed prorotocol test
* fix deinit sil test
SemanticARCOptVisitor::performGuaranteedCopyValueOptimization was
converting this SIL
%borrow = begin_borrow %copiedValue
%copy = copy_value %borrow
%borrowCopy = begin_borrow %copy
end_borrow %borrow
end_borrow %borrowCopy
destroy_value %copy
// something something
unreachable
into
%borrow = begin_borrow %copiedValue
%innerBorrow = begin_borrow %borrow
end_borrow %borrow
end_borrow %innerBorrow
// something something
unreachable
Dead-end blocks are simply irrelevant for this
optimization. Unfortunately, there were multiple layers of attempted
workarounds that were hiding the real problem, except in rare cases.
Thanks Nate Chandler for reducing the test.
To give a bit more information, currently the way the move function is
implemented is that:
1. SILGen emits a builtin "move" that is called within the function _move in the
stdlib.
2. Mandatory Inlining today if the final inlined type is address only, inlines
builtin "move" as mark_unresolved_move_addr. Otherwise, if the inlined type
is loadable, it performs a load [take] + move [diagnostic] + store [init].
3. In the diagnostic pipeline before any mem optimizations have run, we run the
move checker for addresses. This eliminates /all/ mark_unresolved_move_addr
as part of emitting diagnostics. In order to make this work, we perform a
small optimization before the checker runs that moves the
mark_unresolved_move_addr from being on temporary alloc_stacks to the true
base underlying address we are trying to move. This optimization is necessary
since _move is generic and often times SILGen will emit this temporary that
we do not want.
4. Then after we have run the guaranteed mem optimizations, we run the object
based move checker emitting diagnostics.
This PR changes the scheme above to the following:
1. SILGen emits a builtin "move" that is called within the function _move in the
stdlib.
2. Mandatory Inlining inlines builtin "move" as mark_unresolved_move_addr.
3. In the diagnostic pipeline before we have run any mem optimizations and
before we have run the actual move address checker, we massage the IR as we
do above but in a separate pass where in addition we try to match this pattern:
```
%temporary = alloc_stack $LoadableType
store %1 to [init] %temporary : $*LoadableType
mark_unresolved_move_addr %temporary to %otherAddr : $*LoadableType
destroy_addr %temporary : $*LoadableType
```
and transform it to:
```
%temporary = alloc_stack $LoadableType
%2 = move_value [allows_diagnostics] %1 : $*LoadableType
store %2 to [init] %temporary : $*LoadableType
destroy_addr %temporary : $*LoadableType
```
ensuring that the object move checker will handle this.
4. Then after we have run the guaranteed mem optimizations, we run the object
based move checker emitting diagnostics.
The effect of passing -enable-copy-propagation is both to enable the
CopyPropagation pass to shorten object lifetimes and also to enable
lexical lifetimes to ensure that object lifetimes aren't shortened while
a variable is still in scope and used.
Add a new flag, -enable-lexical-borrow-scopes=true to override
-enable-copy-propagation's effect (setting it to ::ExperimentalLate) on
SILOptions::LexicalLifetimes that sets it to ::Early even in the face of
-enable-copy-propagation. The old flag -disable-lexical-lifetimes is
renamed to -enable-lexical-borrow-scopes=false but continues to set that
option to ::Off even when -enable-copy-propagation is passed.
Previously, CanonicalizeInstruction::eliminateSimpleBorrows bailed out
when encountering any any [lexical] begin_borrow. While generally such
borrow scopes must be preserved, they may be removed if they are
redundant (when the borrowed value is guaranteed by another means: an
outer lexical borrow scope or a guaranteed function argument). Here,
removing such redundant lexical borrow scopes is enabled.
During copy propagation (for which -enable-copy-propagation must still
be passed), also try to shrink borrow scopes by hoisting end_borrows
using the newly added ShrinkBorrowScope utility.
Allow end_borrow instructions to be hoisted over instructions that are
not deinit barriers for the value which is borrowed. Deinit barriers
include uses of the value, loads of memory, loads of weak references
that may be zeroed during deinit, and "synchronization points".
rdar://79149830
This instruction is similar to a copy_addr except that it marks a move of an
address that has to be checked. In order to keep the memory lifetime verifier
happy, the semantics before the checker runs are the mark_unresolved_move_addr is
equivalent to copy_addr [init] (not copy_addr [take][init]).
The use of this instruction is that Mandatory Inlining converts builtin "move"
to a mark_unresolved_move_addr when inlining the function "_move" (the only
place said builtin is invoked).
This is then run through a special checker (that is later in this PR) that
either proves that the mark_unresolved_move_addr can actually be a move in which
case it converts it to copy_addr [take][init] or if it can not be a move, emit
an error and convert the instruction to a copy_addr [init]. After this is done
for all instructions, we loop back through again and emit an error on any
mark_unresolved_move_addr that were not processed earlier allowing for us to
know that we have completeness.
NOTE: The move kills checker for addresses is going to run after Mandatory
Inlining, but before predictable memory opts and friends.
Revert part of a fix that used InstructionDeleter consistently during
ConstantPropagation. This had a side effect of removing more dead code
at -Onone. For some reason, that breaks SIL linkage. This showed up
when rebuilding the Foundation module against a debug (-Onone)
standard library, and verifying Data.InlineData.subscript.getter.
Fixes rdar://85809683 (Swift CI: SIL verification failed: external
declarations of SILFunctions with shared visibility is not allowed:
SingleFunction || !hasSharedVisibility(RefF->getLinkage()) ||
RefF->hasForeignBody())
Rerun RLE with cutting off the base address of loads at `ref_element/tail_addr [immutable]`. This increases the chance of catching loads of immutable COW class properties or elements.
This cleans up 90 instances of this warning and reduces the build spew
when building on Linux. This helps identify actual issues when
building which can get lost in the stream of warning messages. It also
helps restore the ability to build the compiler with gcc.
Fix isScopeAffectingInstructionDead to use this new API. A stdlib
assert, which has "program_termination" semantics, should not be
considered read-only.
isReadOnlyConstantEvaluableCall API:
/// Return true iff the \p applySite is constant-evaluable and read-only.
///
/// Functions annotated as "constant_evaluable" are assumed to be "side-effect
/// free", unless their signature and substitution map indicates otherwise. A
/// constant_evaluable function call is read only unless it:
/// (1) has generic parameters
/// (2) has inout parameters
/// (3) has indirect results
///
/// Read-only constant evaluable functions can do only the following and
/// nothing else:
/// (1) The call may read any memory location.
/// (2) The call may destroy owned parameters i.e., consume them.
/// (3) The call may write into memory locations newly created by the call.
/// (4) The call may use assertions, which traps at runtime on failure.
/// (5) The call may return a non-generic value.
///
/// Essentially, these are calls whose "effect" is visible only in their return
/// value or through the parameters that are destroyed. The return value
/// is also guaranteed to have value semantics as it is non-generic and
/// reference semantics is not constant evaluable.
The InstructionDeleter needs to move the callbacks during construction
to prevent the client code from using the old callbacks.
Fixes iterator invalidation bugs.
The reason why I am doing this is that we are going to be enabling lexical
lifetimes early in the pipeline so that I can use it for the move operator's
diagnostics.
To make it easy for passes to know whether or not they should support lexical
lifetimes, I included a query on SILOptions called
supportsLexicalLifetimes. This will return true if the pass (given the passed in
option) should insert the lexical lifetime flag. This ensures that passes that
run in both pipelines (e.x.: AllocBoxToStack) know whether or not to set the
lexical lifetime flag without having to locally reason about it.
This is just chopping off layers of a larger patch I am upstreaming.
NOTE: This is technically NFC since it leaves the default alone of not inserting
lexical lifetimes at all.
Required for UnsafeRawPointer.withMemoryReboud(to:).
%out_token = rebind_memory %0 : $Builtin.RawPointer to %in_token
%0 must be of $Builtin.RawPointer type
%in_token represents a cached set of bound types from a prior memory state.
%out_token is an opaque $Builtin.Word representing the previously bound
types for this memory region.
This instruction's semantics are identical to ``bind_memory``, except
that the types to which memory will be bound, and the extent of the
memory region is unknown at compile time. Instead, the bound-types are
represented by a token that was produced by a prior memory binding
operation. ``%in_token`` must be the result of bind_memory or
This is a signal to the move value kill analysis that this is a move that should
have diagnostics emitted for it. It is a temporary addition until we add
MoveOnly to the SIL type system.
Eliminate the required use of existentials in distributed actors by
introducing the `Transport` associated type into the
`DistributedActor` protocol. Each distributed actor has a known
(concrete) actor transport type, reducing storage requirements and
transport dynamism when it isn't needed.
Distributed actors can manually specify their `Transport` associated
type or pick up a default by looking for a type named
`DefaultActorTransport`. A library that vends an actor transport can
make create a public typealias `DefaultActorTransport` referring to
its transport, so importing that library and defining a distributed
actor will use that library's transport.
Introduce a type-erased `AnyActorTransport` type to provide an
explicitly dynamic actor transport. This is still an important option,
e.g., for cases where one wants to be able to dynamically change the
transport for testing or different kinds of deployment. For now, we
default to this transport in the library (via `DefaultActorTransport`),
but we may very well want to eliminate this because it will be
ambiguous with client libraries that vend their own
`DefaultActorTransport`.