This patch replace all in-memory objects of DebugValueAddrInst with
DebugValueInst + op_deref, and duplicates logics that handles
DebugValueAddrInst with the latter. All related check in the tests
have been updated as well.
Note that this patch neither remove the DebugValueAddrInst class nor
remove `debug_value_addr` syntax in the test inputs.
In OSSA RLE for loops, in certain cases SSAUpdater will not create a new
SILPhiArgument to be used as the forwarding value. Based on dominator info
it may return the newly copied available value as the forwarding value.
This newly copied available value in the dominating predecessor
will have destroy values at leaking blocks.
Rename makeNewValueAvailable to makeValueAvailable and handle users so that only
additional required destroy_values are inserted.
This pattern was really error-prone. I've fixed multiple bugs related
to CurGenericSignature not being set correctly at the right time, and
found another latent bug by inspection while doing this cleanup.
We were using compiler-generated source location (i.e. line number
0) on `debug_value` instructions were emitted by salvage debug info.
But it turned out that IRGen will attach DW_AT_artificial on the
associated debug variables, which are hidden in debugger by default.
This patch prevent this issue by using the source location from the
just-deleted instruction for these `debug_value` instructions.
This indirectly triggered another bug where some of the LLVM
!DIExpression-s we generated are actually invalid -- more specifically,
the fragment inside is covering the whole debug variable. The reason it was
not previously caught is because LLVM verifier skips any debug variable
that is marked artificial, and all debug variables that have illegal fragment
are falling under this category. Thus, this patch also fixes this issue
by not generating the DW_OP_LLVM_fragment part if it's illegal.
Ownership rauw uses a shared ownership fixup context to maintain state.
When ownership rauw fails, due to some invalid condition, we leave
behind stale data in this shared ownership fixup context.
This stale context can indvertantly affect the next rauw on addresses.
In addition to setting the ownership fixup context to nullptr, we
should also clear it so that it's internal data structures are
cleared.
OSSA rauw cleans up end of scope markers before rauw'ing.
This can lead to inadvertant deleting of end_lifetime, later
resulting in an ownership verifier error indicating a leak.
This PR stops treating end_lifetime scope ending like end_borrow/end_access.
Determines whether an address might be inside a borrowed scope. If so,
then any address substitution needs to find that scope boundary to
avoid violating its basic guarantee that all uses are within scope.
SROA and Mem2Reg now can leverage DIExpression -- op_fragment, more
specifically -- to generate correct debug info for optimized SIL. Some
important highlights:
- The new swift::salvageDebugInfo, similar to llvm::salvageDebugInfo,
tries to restore / transfer debug info from a deleted instruction.
Currently I only implemented this for store instruction whose
destination is an alloc_stack value.
- Since we now have source-variable-specific SIL location inside a
`debug_value` instruction (and its friends), this patch teaches
SILCloner and SILInliner to remap the debug scope there in addition
to debug scope of the instruction.
- DCE now does not remove `debug_value` instruction whose associating
with a function argument SSA value that is not used elsewhere. Since
that SSA value will not disappear so we should keep the debug info.
Debug variables that are marked 'implicit' on its `debug_value`
instruction mean that they were generated by compiler. Optimizers are
free to remove them (if it becomes a dead code, for instance) even in
-Onone. Since they are barely used by users and keeping them might lead
to incorrect IRGen results.
Start treating the null {Can}GenericSignature as a regular signature
with no requirements and no parameters. This not only makes for a much
safer abstraction, but allows us to simplify a lot of the clients of
GenericSignature that would previously have to check for null before
using the abstraction.
This rewrites functionality that was mostly disabled but is now ready
to be enabled.
Allow lifetime canonicalization of owned values and function arguments
as a simple stand-alone utility. This is now being called from within
SILCombine, so we should only do the kind of canonicalization that
makes sense in that context.
Canonicalizing other borrow scopes should *not* be invoked as a
single-value cleanup because it affects other lifetimes outside the
borrow scope boundary. It is a somewhat complicated process that
hoists and sinks forwarding instructions and can generate surrounding
compensation code. The copy propagation pass knows how to post-process
the related lifetimes in just the right order. So borrow scope
rewriting should only be done in the copy propagation pass.
Similarly, only do simple canonicalization of owned values and
function arguments at -Onone.
The feature to canoncalize borrow scopes is now ready to be
enabled (-canonical-ossa-rewrite-borrows), but flipping the switch
should be a separate commit. So most of the functionality that was
affected is not exposed by this PR.
Changes:
Split canonicalization of owned lifetimes vs. borrowed lifetimes into
separate utilities. The owned lifetime utility is now back to being
the simple utility that I originally envisioned. So not much happened
to it other than removing complexity.
We now have a separate entry point for finding the starting point for
rewriting borrow scopes:
CanonicalizeBorrowScope::getCanonicalBorrowedDef.
We now have a utility that defines forwarding instructions that we can
treat consistently as part of a guaranteed lifetime,
CanonicalizeBorrowScope::isRewritableOSSAForward.
We now have a utility that defines the uses of a borrowed value that
are considered part of its lifetime,
CanonicalizeBorrowScope::visitBorrowScopeUses. This single utility is
used to implement three different parts of the alogrithm:
1. Find any uses of the borrowed value that need to be propagated
outside the borrow scope
2. RewriteInnerBorrowUses for SILFunction arguments and borrow scopes
with no outer uses.
3. RewriteOuterBorrowUses for borrow scopes with outer uses. Handling
these involves creating new copies outside the borrow scope and
hoisting forwarding instructions.
The end result is that a lot of borrow scopes can be eliminated and
owned values can be forwarded to destructures, reducing copies and
destroys.
If we stop generating borrow scopes for all interior pointers, then
we'll need to design a comparable optimization that works on
"implicit" borrow scopes:
%ownedDef = ...
%element struct_extract %ownedDef
%copy = copy_value %element
apply(@guaranteed %element)
apply(@owned %copy)
destroy %ownedDef
Should be:
%ownedDef = ...
%borrowedElement = destructure_struct @guaranteed %ownedDef
apply(@guaranteed %borrowedElement)
%ownedElement = destructure_struct %ownedDef
apply(@owned %copy)
Don't allow an owned call argument to be considered a valid BorrowingOperand.
More generally, make sure there is a perfect equivalence between valid
BorrowingOperand and the corresponding OperandOwnership kind.
Fixes rdar://77684045. The rdar is about a SILVerifier assert for SIL created by
cast optimizer, where a guaranteed op of checked_cast_br iis transformed to an op of
a phi argument without creating borrow scope.
Fix:
During cast optimization, when the direction of checked_cast_br can be determined statically,
replace the success/failure value in the destination block and create an unconditional branch
to the destination block. This is done only in OSSA, since we ban critical edges.
Track in-use iterators and update them both when instructions are
deleted and when they are added.
Safe iteration in the presence of arbitrary changes now looks like
this:
for (SILInstruction *inst : deleter.updatingRange(&bb)) {
modify(inst);
}