The overhead of uniquing the locations in a Densemap isn't worth any of
the potential memory savings: While this adds an extra pointer and
unsigned to each SILInstruction, any extra memory is completely lost in
the noise (measured on a release -emit-ir build of the x86_64 stdlib).
This is not too surpising as the ratio between SILInstructions and unique
SILLocations is not very high and the DenseMap also needs space.
<rdar://problem/22706994>
remove the mixed concept that was SILFileLocation.
Also add support for a third type of underlying storage that will be used
for deserialized debug lcoations from textual SIL.
NFC
<rdar://problem/22706994>
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
This is effectively fallout from 36a44cf3 where we switched representations of DeclID
and friends, but when I went to add ++ and -- to llvm::PointerEmbeddedInt I realized
it wasn't really intended to be mutated in place, i.e. it doesn't make sense to
increment a DeclID. Represent counters as plain integers instead that get converted
to DeclID when they are first used.
...because "build configuration" is already the name of an Xcode feature.
- '#if' et al are "conditional compilation directives".
- The condition is a "conditional compilation expression", or just
"condition" if it's obvious.
- The predicates are "platform conditions" (including 'swift(>=...)')
- The options set with -D are "custom conditional compilation flags".
(Thanks, Kevin!)
I left "IfConfigDecl" as is, as well as SourceKit's various "BuildConfig"
settings because some of them are part of the SourceKit request format.
We can change these in follow-up commits, or not.
rdar://problem/19812930
There's a group of methods in `DeclContext` with names that start with *is*,
such as `isClassOrClassExtensionContext()`. These names suggests a boolean
return value, while the methods actually return a type declaration. This
patch replaces the *is* prefix with *getAs* to better reflect their interface.
The two types are nearly identical, and Fixnum is only in the Swift branches of LLVM,
not in mainline LLVM.
I do want to add ++ to PointerEmbeddedInt and fix some of this ugliness, but that'll
have to go through LLVM review, so it might take a bit.
Use the isScoped() bit to distinguish scoped imports from submodule
imports (both of which are split by null bytes in the string) so that we
don't try to lookup a submodule name as if it were a decl (leading to
assertion failures when it wasn't found).
This fixes interface generation of swift modules that import clang
submodules.
rdar://problem/24534122
Introduce Fix-Its to aid migration from selectors spelled as string
literals ("foo:bar:", which is deprecated), as well as from
construction of Selector instances from string literals
(Selector("foo:bar"), which is still acceptable but not recommended),
to the #selector syntax. Jump through some hoops to disambiguate
method references if there are overloads:
fixits.swift:51:7: warning: use of string literal for Objective-C
selectors is deprecated; use '#selector' instead
_ = "overloadedWithInt:" as Selector
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#selector(Bar.overloaded(_:) as (Bar) -> (Int) -> ())
In the cases where we cannot provide a Fix-It to a #selector
expression, we wrap the string literal in a Selector(...) construction
to suppress the deprecation warning. These are also easily searchable
in the code base.
This also means we're doing more validation of the string literals
that go into Selector, i.e., that they are well-formed selectors and
that we know about some method that is @objc and has that
selector. We'll warn if either is untrue.
As part of SE-0022, introduce an 'objc_selector' encoding for string
literals that places the UTF-8 string literal into the appropriate
segment for uniquing of Objective-C selector names.
As there are no instructions left which produce multiple result values, this is a NFC regarding the generated SIL and generated code.
Although this commit is large, most changes are straightforward adoptions to the changes in the ValueBase and SILValue classes.
And use the new project_existential_box to get to the address value.
SILGen now generates a project_existential_box for each alloc_existential_box.
And IRGen re-uses the address value from the alloc_existential_box if the operand of project_existential_box is an alloc_existential_box.
This lets the generated code be the same as before.
computing its type. NFC, but it means that dumping the type in the
deubgger while in computeType() works better.
Make sure to set "isrecursive" in ArchetypeBuilder.cpp on an
associated type when the container is found to be recursive even if
we don't emit the diagnostic. Spotted by inspection, NFC AFAIK.
Enhance the ASTDumper to print the recursive bit on associated types.
Since resilience is a property of the module being compiled,
not decls being accessed, we need to record which types are
resilient as part of the module.
Previously we would only ever look at the @_fixed_layout
attribute on a type. If the flag was not specified, Sema
would slap this attribute on every type that gets validated.
This is wasteful for non-resilient builds, because there
all types get the attribute. It was also apparently wrong,
and I don't fully understand when Sema decides to validate
which decls.
It is much cleaner conceptually to just serialize this flag
with the module, and check for its presence if the
attribute was not found on a type.
My recent changes added "resiliently-sized" global variables, where a
global in one module is defined to be of a type from another module,
and the type's size is not known at compile time.
This patch adds the other half of the equation: when accessing a
global variable defined by another module, we want to use accessors
since we want to resiliently change global variables from stored to
computed and vice versa.
The main complication here is that the synthesized accessors are not
part of any IterableDeclContext, and require some special-casing in
SILGen and Serialization. There might be simplifications possible here.
For testing and because of how the resilience code works right now,
I added the @_fixed_layout attribute to global variables. In the
future, we probably will not give users a way to promise that a
stored global variable will always remain stored; or perhaps we will
hang this off of a different attribute, once we finalize the precise
set of attributes exposed for resilience.
There's probably some other stuff with lazy and observers I need to
think about here; leaving that for later.
Introduce a new attribute, swift3_migration, that lets us describe the
transformation required to map a Swift 2.x API into its Swift 3
equivalent. The only transformation understood now is "renamed" (to
some other declaration name), but there's a message field where we can
record information about other changes. The attribute can grow
somewhat (e.g., to represent parameter reordering) as we need it.
Right now, we do nothing but store and validate this attribute.
As part of this, use a different enum for parsed generic requirements.
NFC except that I noticed that ASTWalker wasn't visiting the second
type in a conformance constraint; fixing this seems to have no effect
beyond producing better IDE annotations.
This eliminates some minor overheads, but mostly it eliminates
a lot of conceptual complexity due to the overhead basically
appearing outside of its context.
The main idea here is that we really, really want to be
able to recover the protocol requirement of a conformance
reference even if it's abstract due to the conforming type
being abstract (e.g. an archetype). I've made the conversion
from ProtocolConformance* explicit to discourage casual
contamination of the Ref with a null value.
As part of this change, always make conformance arrays in
Substitutions fully parallel to the requirements, as opposed
to occasionally being empty when the conformances are abstract.
As another part of this, I've tried to proactively fix
prospective bugs with partially-concrete conformances, which I
believe can happen with concretely-bound archetypes.
In addition to just giving us stronger invariants, this is
progress towards the removal of the archetype from Substitution.
If a global variable in a module we are compiling has a type containing
a resilient value type from a different module, we don't know the size
at compile time, so we cannot allocate storage for the global statically.
Instead, we will use a buffer, just like alloc_stack does for archetypes
and resilient value types.
This adds a new SIL instruction but does not yet make use of it.
A protocol conformance needs to know what declarations satisfy requirements;
these are called "witnesses". For a value (non-type) witness, this takes the
form of a ConcreteDeclRef, i.e. a ValueDecl plus any generic specialization.
(Think Array<Int> rather than Array<T>, but for a function.)
This information is necessary to compile the conformance, but it causes
problems when the conformance is used from other modules. In particular,
the type used in a specialization might itself be a generic type in the
form of an ArchetypeType. ArchetypeTypes can't be meaningfully used
outside their original context, however, so this is a weird thing to
have to deal with. (I'm not going to go into when a generic parameter is
represented by an ArchetypeType vs. a GenericTypeParamType, partially
because I don't think I can explain it well myself.)
The above issue becomes a problem when we go to use the conformance from
another module. If module C uses a conformance from module B that has a
generic witness from module A, it'll think that the archetypes in the
specialization for the witness belong in module B. Which is just wrong.
It turns out, however, that no code is using the full specializations for
witnesses except for when the conformance is being compiled and emitted.
So this commit sidesteps the problem by just not serializing the
specializations that go with the ConcreteDeclRef for a value witness.
This doesn't fix the underlying issue, so we should probably still see
if we can either get archetypes from other contexts out of value witness
ConcreteDeclRefs, or come up with reasonable rules for when they're okay
to use.
rdar://problem/23892955