If we got just the wrong chain of dependencies, we'd create two VarDecls
for the same variable. I'm not sure if any of the other decls have the
same problem, but better safe than sorry.
I couldn't think of a small test case for this, but it does fix the one
in the Radar.
<rdar://problem/16205936>
Swift SVN r14625
This fixes a bug where we were deserializing a function with a call to a shared
linkage function. The shared linkage function was never deserialized causing an
assertion to fire due to shared linkage functions always needing a definition.
I am planning on implementing lazy deserialization of vtable functions.
Swift SVN r14581
alloc_ref_dynamic allocates an instance of a class type based on the
value in its metatype operand. Start emitting these instructions for
the allocating constructor of a complete object initializer (not yet
tested) and for the allocating constructor synthesized for an imported
Objective-C init method.
Still missing:
- IRGen still does the same thing as alloc_ref right now. That
change will follow.
- There are devirtualization opportunities when we know the value of
the metatype that would turn an alloc_ref_dynamic into an alloc_ref;
I'm not planning to do this optimization.
Swift SVN r14560
It's not forming the metatype for the protocol type (exists t: P. t).metatype, it's forming the existential of a metatype of a conforming type, exists t: P. (t.metatype).
Swift SVN r14520
Having one instruction to get the dynamic metatype of a (non-existential) value makes more sense from a generic specialization standpoint and should stave off inevitable crashers when archetype_metatypes get specialized. protocol_metatype remains separate because metatype existentials are more interesting.
Swift SVN r14499
We were wantonly applying 'upcast' to archetypes in some cases, and really, that's OK, since these instructions do the same thing (and generic specialization could turn archetype_ref_to_super into upcast). Make everyone's life easier by folding archetype_to_super into upcast. Fixes <rdar://problem/16192324>.
Swift SVN r14496
The 'override' attribute indicates that the given declaration, which
may be a method, property, or subscript, overrides a declaration in
its superclass. Per today's discussion, the 'override' attribute must
be present if and only if the corresponding declaration overrides a
declaration in its superclass.
This implements most of <rdar://problem/14798539>. There's still more
work to do to on property and subscript overrides.
Swift SVN r14388
With this commit, we can deserialize the stdlib. Still running into
issues related to linking that requires a consultation with John. That
will come in a later commit.
Swift SVN r14365
Swift can now find modules inside framework bundles matching this layout:
Foo.framework/
Foo.swiftmodule/
ARCH.swiftmodule
Currently, ARCH is the architecture name used by build configurations (#if),
but this was more done out of convenience than anything else (there's
currently no access to the current target from the ASTContext). We'll need
to revisit this if/when we decide to support architecture subtypes (armv7s
vs. armv7 vs. arm), at which point we'll also have to deal with fallback
architectures.
Framework search paths are specified using -F. Like bare import paths, there
are currently no "built-in framework search paths".
The master plan for Swift frameworks is in <rdar://problem/16062602>.
<rdar://problem/16155907>
Swift SVN r14363
The default (F_None) used to mean F_Text, now it is F_Binary, which is arguably
a better default. It only matters on Windows anyway, so just use F_None (to
mean binary mode) everywhere to allow Swift to be compled with older LLVM as
well as current ToT.
Swift SVN r14312
These changes add support for build and target configurations in the compiler.
Build and target configurations, combined with the use of #if/#else/#endif allow
for conditional compilation within declaration and statement contexts.
Build configurations can be passed into the compiler via the new '-D' flag, or
set within the LangOptions class. Target configurations are implicit, and
currently only "os" and "arch" are supported.
Swift SVN r14305
lowered field type of a ref_element_addr's parent projection, rather than using
the unlowered siltype generated via creating a SILType from the field's
vardecl.
Swift SVN r14294
We should also remove it from IRGen's Explosion API; IRGen
should always use maximal explosion, and SILGen will tell us
whether or not we need to put that in memory somewhere.
But that can be a later commit.
Swift SVN r14242
getAll deserializes all SIL (except for globals). This enables us to iterate
over the SILModules once instead of once for first SILFunctions, then VTables,
then WitnessTables which is just inefficient.
Swift SVN r14176
This enables us to lookup a function from a key by avoiding the need to create
an identifier inside the OnDiskHashTable structure. Doing so would require an
ASTContext, something that is not available therein.
As a side effect this also makes OnDiskHashTable more efficient by just using a
StringRef reference instead of creating a uniqued identifier in the AST for
every deserialized node in the table.
Swift SVN r14169
- Parameterize maybeReadGenericParams' BitstreamCursor so that we can read from
the correct cursor when trying to read the generic params of a SILFunction.
- Only serialize the context generic params for SILFunctions for which we're
serializing a complete definition. This fixes issues with us getting the
wrong archetypes forward-declared from references in other modules.
In this version of the patch, we adjust the deserialization point for the
generic param list to correctly come before we check if the SILFunction block
is empty, and we add a kludge to keep the JIT from crapping itself when it sees
the same transparent definition in multiple REPL lines' modules
<rdar://problem/16094902>.
The previous commit solves a problem this exposed at r14050 in inout deshadowing
that caused memory corruption when transparent functions were imported. This
should now be safe to commit.
Swift SVN r14109
Introduce the SIL instructions thick_to_objc_metatype and
objc_to_thick_metatype to convert between the 'thick' and
'Objective-C' representations of a metatype. Most of this code is
trivial support code for these conversions: printing, parsing,
(de-)serialization, etc., for which testing will come online in
subsequent patches or is incidental in other tests.
Lower Objective-C metatype values down to objc_class* at the IR level
and implement IRGen support for these SIL instructions. SIL-only test
case at the moment because SILGen never creates these instructions.
Swift SVN r14087
We can attach comments to declarations. Right now we only support comments
that precede the declarations (trailing comments will be supported later).
The implementation approach is different from one we have in Clang. In Swift
the Lexer attaches the comments to the next token, and parser checks if
comments are present on the first token of the declaration. This is much
cleaner, and faster than Clang's approach (where we perform a binary search on
source locations and do ad-hoc fixups afterwards).
The comment <-> decl correspondence is modeled as "virtual" attributes that can
not be spelled in the source. These attributes are not serialized at the
moment -- this will be implemented later.
Swift SVN r14031
- Parameterize maybeReadGenericParams' BitstreamCursor so that we can read from the correct cursor when trying to read the generic params of a SILFunction.
- Only serialize the context generic params for SILFunctions for which we're serializing a complete definition. This fixes issues with us getting the wrong archetypes forward-declared from references in other modules.
In this version of the patch, we adjust the deserialization point for the generic param list to correctly come before we check if the SILFunction block is empty, and we add a kludge to keep the JIT from crapping itself when it sees the same transparent definition in multiple REPL lines' modules <rdar://problem/16094902>.
Swift SVN r14030
- Parameterize maybeReadGenericParams' BitstreamCursor so that we can read from the correct cursor when trying to read the generic params of a SILFunction.
- Only serialize the context generic params for SILFunctions for which we're serializing a complete definition. This fixes issues with us getting the wrong archetypes forward-declared from references in other modules.
This gets me a clean build when applied against r13984.
Swift SVN r14005