OSSA lifetime canonicalization can take a very long time in certain
cases in which there are large basic blocks. to mitigate this, add logic
to skip walking the liveness boundary for extending liveness to dead
ends when there aren't any dead ends in the function.
Updates `DeadEndBlocks` with a new `isEmpty` method and cache to
determine if there are any dead-end blocks in a given function.
(cherry picked from commit 1f3f830fc7)
To guard the new UnsafeMutablePointer.mutableSpan APIs.
This allows older compilers to ignore the new APIs. Otherwise, the type checker
will crash on the synthesized _read accessor for a non-Escapable type:
error: cannot infer lifetime dependence on the '_read' accessor because 'self'
is BitwiseCopyable, specify '@lifetime(borrow self)'
I don't know why the _read is synthesized in these cases, but apparently it's
always been that way.
Fixes: rdar://153773093 ([nonescapable] add a compiler feature to guard
~Escapable accessors when self is trivial)
(cherry picked from commit cc357f4f32)
The problem is that async_Main was setting an executor as its main executor
instead of an actor. This patch fixes the issue by just grabbing the main actor
instead.
rdar://153082633
(cherry picked from commit 862ef621c7)
Specifically, there is currently a bug in TypeCheckConcurrency.cpp where we do
not visit autoclosures. This causes us to never set the autoclosure's
ActorIsolation field like all other closures. For a long time we were able to
get away with this just by relying on the isolation of the decl context of the
autoclosure... but with the introduction of nonisolated(nonsending), we found
cases where the generated single curry autoclosure would necessarily be
different than its decl context (e.x.: a synchronous outer curry thunk that is
nonisolated that returns an inner curry thunk that is
nonisolated(nonsending)). This problem caused us to hit asserts later in the
compiler since the inner closure was actually nonisolated(nonsending), but we
were thinking that it should have been concurrent.
To work around this problem, I changed the type checker in
ced96aa5cd to explicitly set the isolation of
single curry thunk autoclosures when it generates them. The reason why we did
this is that it made it so that we did not have to have a potential large source
break in 6.2 by changing TypeCheckConcurrency.cpp to visit all autoclosures it
has not been visiting.
This caused a follow on issue where since we were now inferring the inner
autoclosure to have the correct isolation, in cases where we were creating a
double curry thunk for an access to a global actor isolated field of a
non-Sendable non-global actor isolated nominal type, we would have the outer
curry thunk have unspecified isolation instead of main actor isolation. An
example of this is the following:
```swift
class A {
var block: @MainActor () -> Void = {}
}
class B {
let a = A()
func d() {
a.block = c // Error! Passing task isolated 'self' to @MainActor closure.
}
@MainActor
func c() {}
}
```
This was unintentional. To work around this, this commit changes the type
checker to explicitly set the double curry thunk isolation to the correct value
when the type checker generates the double curry thunk in the same manner as it
does for single curry thunks and validates that if we do set the value to
something explicitly that it has the same value as the single curry thunk.
rdar://152522631
(cherry picked from commit c28490b527)
If we have a tuple with unresolved pack expansion on one side
and an optional type on the other, prevent `matchTypes` from
wrapping optional into a one-element tuple because the matching
should be handled as part of the optional injection.
Resolves: rdar://152940244
(cherry picked from commit 6cfbafd968)
rdar://153681688
Instead fo counting the actual conformances, the logic took the size of the bit field, i.e. used the highest set bit, so when a type had a conditional conformance only on ~Escapable, but not on ~Copyable, it would still add 2 placeholders, but only fill one.
This may be useful for type layout of borrow fields in the future, should we
decide that addressable-for-dependencies borrows should always be represented
by a pointer. rdar://153650278
If a `nonisolated` type conforms to a global-isolated protocol
the witnesses to the protocol requirements should infer the
isolation from the protocol but instead be `nonisolated`.
Resolves: rdar://145519840
(cherry picked from commit e50acbf3d5)
Even if the requirement is stated on an isolated protocol if the
conformance is implied by a nonisolated one all of the requirements
and witnesses should be nonisolated.
(cherry picked from commit 06be7bda39)
This logic was introduced in https://github.com/swiftlang/swift/pull/75135.
The intent was to prevent an implied conformance from overriding an
existing unavailable one, for example in the case of Sendable. Let's
relax this check a bit to only diagnose if the mismatch is in the
unconditional availability, and not OS version.
Fixes rdar://142873265.
Explanation: Shared references imported from C++ were not considered
safe. This is a widely used feature and this fix is blocking the users
from adopting strictly memory safe Swift.
Issue: rdar://151039766
Risk: Low, the fix only changes what declarations are considered safe.
Testing: Regression test added.
Original PR: #82203
Reviewer: @egorzhdan @fahadnayyar
When accessing stored properties out of an addressable variable or parameter
binding, the stored property's address inside the addressable storage of the
aggregate is itself addressable. Also, if a computed property is implemented
using an addressor, treat that as a sign that the returned address should be
used as addressable storage as well. rdar://152280207
When a `FixedArray`'s fixed size is 1, it looks like `[1 x %Ty]`. Given
an array's address, performing an operation on each element's address
entail's indexing into the array to each element's index to produce an
element's address for each index. That is true even when the array
consists of a single element. In that case, produce an address for that
single element by indexing to index 0 into each passed-in array.
rdar://151726387
These are special declarations that are synthesized by the compiler
or a macro and warnings about them are non-actionable.
(cherry picked from commit 17976c7775)
The execution of these functions is controlled by the testing
framework and it's okay if their behavior changes when the feature
flag is enabled.
Resolves: rdar://152687527
(cherry picked from commit f2f5d234dc)
This fixes a small oversight in the type checker's LifetimeDependence
inference. Allow inference on _read accessors even when 'self' is a trivial
type. This is needed because the compiler synthesizes a _read accessor even when
the user defines a getter (this is probably a mistake, but it's easire to just
fix inference at this point). There is no workaround because it defining both a
getter and '_read' is illegal!
extension UnsafeMutableRawBufferPointer {
var mutableBytes: MutableRawSpan {
@_lifetime(borrow self)
get {
unsafe MutableRawSpan(_unsafeBytes: self)
}
}
}
Fixes rdar://153346478 (Can't compile the
UnsafeMutableRawBufferPointer.mutableBytes property)
(cherry picked from commit 125a0862a9)
rdar://149882902
swift_conformsToProtocol does not properly handle nullptr values, which can currently be passed if the source type is an optional metatype. This change adds emission of a null check before calling the runtime function in these cases.
Macro expansion can call typeCheckExpr(), which performs qualified
lookups. So if we expand macros while binding extensions, these
qualified lookups can fail because they cannot find members of
extensions that have not been bound yet.
To fix this, try binding extensions without performing macro
expansion first. If any extensions remain at the end, we fall back
to the old behavior, and try to bind them again, this time
performing macro expansion.
Fixes rdar://149798059.
I previously added this hack to match the logic in
`TypeChecker::lookupUnqualified`, but it turns out that can introduce
request cycles for cases where `CodingKeys` is used in a generic
requirement for one of `Codable`'s potential value witnesses. Scale
back the hack such that it's only done when we get an initial empty
lookup result, ensuring we maintain source compatibility. Both these
lookup hacks should go away once we properly handle CodingKeys
synthesis.
rdar://153096639
Unforunately, x86 ELF linkers like to optimize GOTPCREL relocations by
replacing `mov` instructions that go via the GOT with `lea` instructions
that do not.
That would be fine, but they aren't very selective and will happily
perform this transformation in non-code sections if they think that
the bytes before a relocation look like a `mov` instruction.
This corrupts our metadata.
rdar://148168098
Currently, when we jump-to-definition for decls that are macro-expanded
from Clang imported decls (e.g., safe overloads generated by
@_SwiftifyImport), setLocationInfo() emits a bongus location pointing to
a generated buffer, leading the IDE to try to jump to a file that does
not exist.
The root cause here is that setLocationInfo() calls getOriginalRange()
(earlier, getOriginalLocation()), which was not written to account for
such cases where a macro is generated from another generated buffer
whose kind is 'AttributeFromClang'.
This patch fixes setLocationInfo() with some refactoring:
- getOriginalRange() is inlined into setLocationInfo(), so that the
generated buffer-handling logic is localized to that function. This
includes how it handles buffers generated for ReplacedFunctionBody.
- getOriginalLocation() is used in a couple of other places that only
care about macros expanded from the same buffer (so other generated
buffers not not relevant). This "macro-chasing" logic is simplified
and moved from ModuleDecl::getOriginalRange() to a free-standing
function, getMacroUnexpandedRange() (there is no reason for it to be
a method of ModuleDecl).
- GeneratedSourceInfo now carries an extra ClangNode field, which is
populated by getClangSwiftAttrSourceFile() when constructing
a generated buffer for an 'AttributeFromClang'. This could probably
be union'ed with one or more of the other fields in the future.
rdar://151020332
(cherry picked from commit 44aba1382d)