* Use the `__has_include` and `GRND_RANDOM` macros
* Use `getentropy` instead of `getrandom`
* Use `std::min` from the <algorithm> header
* Move `#if` out of the `_stdlib_random` function
* Use `getrandom` with "/dev/urandom" fallback
* Use `#pragma comment` to import "Bcrypt.lib"
* <https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp>
* <https://clang.llvm.org/docs/UsersManual.html#microsoft-extensions>
* Use "/dev/urandom" instead of `SecRandomCopyBytes`
* Use `swift::StaticMutex` for shared "/dev/urandom"
* Add `getrandom_available`; use `O_CLOEXEC` flag
Add platform impl docs
Update copyrights
Fix docs
Add _stdlib_random test
Update _stdlib_random test
Add missing &
Notice about _stdlib_random
Fix docs
Guard on upperBound = 0
Test full range of 8 bit integers
Remove some gyb
Clean up integerRangeTest
Remove FixedWidthInteger constraint
Use arc4random universally
Fix randomElement
Constrain shuffle to RandomAccessCollection
warning instead of error
Move Apple's implementation
Fix failing test on 32 bit systems
* Remove refs to Countable ranges
* Add `_stdlib_random` for more platforms
* Use `getrandom` (if available) for Android, Cygwin
* Reorder the `_stdlib_random` functions
* Also include <features.h> on Linux
* Add `#error TODO` in `_stdlib_random` for Windows
* Colon after Fatal Error
Performance improvement for Random
gybify ranges
Fix typo in 'basic random numbers'
Add _stdlib_random as a testable method
Switch to generic constraints
Hopefully link against bcrypt
Fix some implementation details
1. Uniform distribution is now uniform
2. Apply Jens' method for uniform floats
Fix a lineable attribute
Initial random api
Use C syscall for I/O
1. Fixed an issue where integers would would result in an infinite loop if they were unsigned, or signed integers always returning negative numbers.
2. Fixed an issue with Bool initialization
Add shuffle functions
Add documentation to Random API
Fix a few typos within the documentation
Fixes more typos
Also states that the range for floating points is from 0 to 1 inclusive
Update API to reflect mailing list discussions
Remove unnecessary import
Make sure not to return upperBound on Range
Use SecRandomCopyBytes on older macOS
Update API to match mailing list discussion, add tests
Added pick(_:) to collection
Added random(in:using:) to Randomizable
Added tests
Fix typo in Randomizable documentation
Rename pick to sampling
Move sampling below random
Update docs
Use new Libc naming
Fix Random.swift with new Libc naming
Remove sampling
gybify signed integer creation
Make FloatingPoint.random exclusive
Refactor {Closed}Range.random
Fix FloatingPoint initialization
Precondition getting a random number from range
Fix some doc typos
Make .random a function
Update API to reflect discussion
Make .random a function
Remove .random() in favor of .random(in:) for all numeric types
Fix compile errors
Clean up _stdlib_random
Cleanup around API
Remove `.random()` requirement from `Collection`
Use generators
Optimize shuffle()
Thread safety for /dev/urandom
Remove {Closed}Range<BinaryFloatingPoint>.random()
Add Collection random requirement
Refactor _stdlib_random
Remove whitespace changes
Clean linux shim
Add shuffle and more tests
Provide finishing tests and suggestions
Remove refs to Countable ranges
Revert to checking if T is > UInt64
The quad precision support in visual studio does not support
the operations which clang will sometimes lower. These currently
generate code using GNU extensions. Add additional stubs for math
routines on Windows. This allows the standard library to build in
debug mode.
When building on Linux, the definition of `swift_snprintf_l` would cause
an unused function warning. Expand the scope of the preprocessor guard
to encompass the function for the single use. This avoids the unused
function warning.
Some of the previously used stubs are no longer needed in newer releases
of the Android API. Android L and Android O provide the functions in
their associated versions of bionic. This is needed to build against a
newer version of the SDK.
The returned type `std::streamoff` on Windows x64 is a `long long`
rather than `int`. This results in a 64-to-32 bit shortening of the
value. Use the appropriate type to avoid the truncation.
`strlen` returns a unsigned value, but `std::streamoff` is an signed
value. Explicitly cast the value to avoid the warning about the
implicit signed conversion.
Move the duplicated compiler-rt support routines into its own source
file. This will need to be expanded for Windows. As on Linux, there
are certain builtin routines which are not available from the standard
runtime and need to be augmented for now.
C requires that there is at least one declaration in a translation unit.
Because this file is ObjC and not ObjC++, this restriction applies. Add
a declaration to silence the warning in the case that ObjC interop is
disabled.
This is only necessary on x86-64. On arm/arm64 we are already ok since the
assembly marker that we use there does not suffer from this issue.
For x86-64 we need to solve the problem upstream by not tailing calling
objc_retainAutoreleasedReturnValue.
rdar://38675842
* SR-106: New floating-point `description` implementation
This replaces the current implementation of `description` and
`debugDescription` for the standard floating-point types with a new
formatting routine based on a variation of Florian Loitsch' Grisu2
algorithm with changes suggested by Andrysco, Jhala, and Lerner's 2016
paper describing Errol3.
Unlike the earlier code based on `sprintf` with a fixed number of
digits, this version always chooses the optimal number of digits. As
such, we can now use the exact same output for both `description` and
`debugDescription` (except of course that `debugDescription` provides
full detail for NaNs).
The implementation has been extensively commented; people familiar with
Grisu-style algorithms should find the code easy to understand.
This implementation is:
* Fast. It uses only fixed-width integer arithmetic and has constant
memory and time requirements.
* Simple. It is only a little more complex than Loitsch' original
implementation of Grisu2. The digit decomposition logic for double is
less than 300 lines of standard C (half of which is common arithmetic
support routines).
* Always Accurate. Converting the decimal form back to binary (using an
accurate algorithm such as Clinger's) will always yield exactly the
original binary value. For the IEEE 754 formats, the round-trip will
produce exactly the same bit pattern in memory. This is an essential
requirement for JSON serialization, debugging, and logging.
* Always Short. This always selects an accurate result with the minimum
number of decimal digits. (So that `1.0 / 10.0` will always print
`0.1`.)
* Always Close. Among all accurate, short results, this always chooses
the result that is closest to the exact floating-point value. (In case
of an exact tie, it rounds the last digit even.)
This resolves SR-106 and related issues that have complained
about the floating-point `description` properties being inexact.
* Remove duplicate infinity handling
* Use defined(__SIZEOF_INT128__) to detect uint128_t support
* Separate `extracting` the integer part from `clearing` the integer part
The previous code was unnecessarily obfuscated by the attempt to combine
these two operations.
* Use `UINT32_MAX` to mask off 32 bits of a larger integer
* Correct the expected NaN results for 32-bit i386
* Make the C++ exceptions here consistent
Adding a C source file somehow exposed an issue in an unrelated C++ file.
Thanks to Joe Groff for the fix.
* Rename SwiftDtoa to ".cpp"
Having a C file in stdlib/public/runtime causes strange
build failures on Linux in unrelated C++ files.
As a workaround, rename SwiftDtoa.c to .cpp to see
if that avoids the problems.
* Revert "Make the C++ exceptions here consistent"
This reverts commit 6cd5c20566.
Cross-compilation for multiple architectures & sdks require various
variables to be split to specify the arch/adk variant being focused on.
This change modifies various uses of the `SWIFT_SDK_${SDK}_PATH` to
`SWIFT_SDK_${SDK}_ARCH_${ARCH}`
* Add partial range subscripts to _UnmanagedOpaqueString
* Use SipHash13+_NormalizedCodeUnitIterator for String hashes on all platforms
* Remove unecessary collation algorithm shims
* Pass the buffer to the SipHasher for ASCII
* Hash the ascii parts of UTF16 strings the same way we hash pure ascii strings
* De-dupe some code that can be shared between _UnmanagedOpaqueString and _UnmanagedString<UInt16>
* ASCII strings now hash consistently for in hashASCII() and hashUTF16()
* Fix zalgo comparison regression
* Use hasher
* Fix crash when appending to an empty _FixedArray
* Compact ASCII characters into a single UInt64 for hashing
* String: Switch to _hash(into:)-based hashing
This should speed up String hashing quite a bit, as doing it through hashValue involves two rounds of SipHash nested in each other.
* Remove obsolete workaround for ARC traffic
* Ditch _FixedArray<UInt8> in favor of _UIntBuffer<UInt64, UInt8>
* Bad rebase remnants
* Fix failing benchmarks
* michael's feedback
* clarify the comment about nul-terminated string hashes
* Cleanup tgmath wrappers.
- Remove special-case gyb logic for lgamma on Darwin; the symbols we need are always present, even if not visible in the headers, so we only need a prototype.
- Add some deprecations for symbols that have direct stdlib analogues.
- Make some operations generic on [Binary]FloatingPoint, where they can map to the protocols instead of calling libm.
- Mark ldexp(Float/Double) renamed to scalbn; for binary formats these are identical functions, and we don't really want to use these names for hypothetical future Decimal support, as they're not Swifty.
Having a single initializer function lets us not set a randomized seed in deterministic mode, slightly simplifying the stdlib.
Set related stdlib properties to be always inlined.
- Hash seed randomization can now be disabled by defining the SWIFT_DETERMINISTIC_HASHING environment value with a value of "1".
- The random hash seed is now generated using arc4random, where available. On platforms where it isn't, don't construct std::random_device twice.
- _Hasher._secretKey is renamed _Hashing._seed, with no setter.
- _Hasher._isDeterministic is a new property exposing whether we're running with non-random hashes. (Set/Dictionary will need this information to decide if they're allowed to use per-instance seeding.)
- `_swiftEmpty{Array,Dictionary,Set}Storage` should be marked with `SWIFT_RUNTIME_STDLIB_INTERFACE` so that they can be linked from the standard library implementation.
- Runtime export symbols ought to have protected visibility.
Adjust the signature to match the ICU declaration for
`unorm2_normalize`. This was adjusted to allow building against ICU
59.1. The shim type definition for the UChar ensures that the signature
is correct on all the targets. NFC.
Restore (un-revert) sting comparison, with fixes
More exhaustive testing of opaque strings, which consistently reproduces prior sporadic failure. Shims fixups. Some test tweaking.
The default ICU build will change the underlying type of the UChar type,
with C++ using the builtin `char16_t` rather than `unsigned short`.
This adjusts the interface to account for that. I've verified across
Apple's implementation that they always use the `unsigned short` as the
type for `UChar`. Since we cannot guarantee that the ICU interfaces are
built the same way on all targets, especially when using the underlying
system's ICU.
Adjust the stubs implementation declaration to match the ICU header's
declaration.
On `istringstream`, `tellg()` returns -1 if the stream is at the end of the file. This indicates success in this circumstance, so we should update `pos` to reflect that the whole string has been read.
NFC on platforms other than Windows, Cygwin, and Haiku.