This is a funnel point for looking up the protocol conformance descriptor
for a given conforming type + conformance. Make it overridable in case we
need to back-deploy changes or fixes.
Implements rdar://problem/46281660.
Always use mangled type names to represent type metadata in keypath patterns.
For generic types, use the generic environment to pull substituted types
from the instantiation arguments.
Finishes the type metadata part of rdar://problem/38038799.
Provide additional stubs for known metadata. These are used in the unit
tests which do not link against the standard library and thus do not
have the known metadata. Augment the existing metadata stubs with the
new decorated names and entries.
Rename the funnel points for demangling strings/nodes to metadata to
swift_getTypeByMangled(Name|Node) and make them overridable. This will let
us back-deploy mangling improvements and bug fixes.
Simplify the signature of the internal _getTypeByMangledName() used by the
standard library to what we actually (currently) use. Drop it as a
compatibility override, because it’s not a useful place to introduce
customization.
Collapse the generic witness table, which was used only as a uniquing
data structure during witness table instantiation, into the protocol
conformance record. This colocates all of the constant protocol conformance
metadata and makes it possible for us to recover the generic witness table
from the conformance descriptor (including looking at the pattern itself).
Rename swift_getGenericWitnessTable() to swift_instantiateWitnessTable()
to make it clearer what its purpose is, and take the conformance descriptor
directly.
Create a new RuntimeUnittest library alongside the other stdlib unit
tests so we can write C++ runtime unit tests callable from lit.
Move runtime exclusivity tests into the stdlib unittest library and
create lit tests so we can verify that the runtime crashes with an
error message.
Remove the compiler support for exclusivity warnings.
Leave runtime support for exclusivity warnings in non-release builds
only for unit testing convenience.
Remove a test case that checked the warning log output.
Modify test cases that relied on successful compilation in the
presence of exclusivity violations.
Fixes: <rdar://problem/45146046> Remaining -swift-version 3 tests for exclusivity
Associated type witnesses in a witness table are cache entries, which are
updated by the runtime when the associated types are first accessed. The
presence of an associated type witness that involves type parameters requires
the runtime to instantiate the witness table; account for that in the runtime.
The presence of any associated type witness makes the witness table
non-constant.
Describe the consequences of missing metadata instead of just posting a scary
message about a bug. Furthermore, since these warnings tend to show up in
playgrounds, and probably aren't relevant to the user of a playground, suppress
them when running in a playground. rdar://problem/44642942
These functions don't accept local variable heap memory, although the names make it sound like they work on anything. When you try, they mistakenly identify such things as ObjC objects, call through to the equivalent objc_* function, and crash confusingly. This adds Object to the name of each one to make it more clear what they accept.
rdar://problem/37285743
Reimplement protocol descriptors for Swift protocols as a kind of
context descriptor, dropping the Objective-C protocol compatibility
layout. The new protocol descriptors have several advantages over the
current implementation:
* They drop all of the unused fields required for layout-compatibility
with Objective-C protocols.
* They encode the full requirement signature of the protocol. This
maintains more information about the protocol itself, including
(e.g.) correctly encoding superclass requirements.
* They fit within the general scheme of context descriptors, rather than
being their own thing, which allows us to share more code with
nominal type descriptors.
* They only use relative pointers, so they’re smaller and can be placed
in read-only memory
Implements rdar://problem/38815359.
Switch one entry point in the runtime (swift_getExistentialTypeMetadata)
to use ProtocolDescriptorRef rather than a protocol descriptor. Update
IRGen to produce ProtocolDescriptorRef instances for its calls, setting
the discriminator bit appropriately.
Within the runtime, verify that all instances of ProtocolDescriptorRef have
the right layout, i.e., the discriminator bit is set for @objc protocols
but not Swift protocols.
Use ProtocolDescriptorRefs within the runtime representation of
existential type metadata (TargetExistentialTypeMetadata) instead of
bare protocol descriptor pointers. Start rolling out the use of
ProtocolDescriptorRef in a few places in the runtime that touch this
code. Note that we’re not yet establishing any strong invariants on
the TargetProtocolDescriptorRef instances.
While here, replace TargetExistentialTypeMetadata’s hand-rolled pointer
arithmetic with swift::ABI::TrailingObjects and centralize knowledge of
its layout better.
Since the mangling scheme and set of standard library types is effectively
fixed now, introduce known mangling substitutions for a number of new
standard library types, filling out the S[A-Za-z] space.
Reduces standard library binary size by ~195k.
And update the existential container's initializeWithTake implementation
in the runtime. After only allowing bitwise takable values in the
inline buffer we can use memcpy to move existential container values.
rdar://31414907
SR-343
Previously, swiftImageInspectionShared generated one specific library at
`lib/libswiftImageInspectionShared.a` for only the main arch and sdk.
Generic cross compilation and various changes to the build system to get
cross compilation to work will require swiftImageInspectionShared to
generate libraries at the proper subdirectory. Change the outputs to
agree with paths such as `lib/swift/linux/x86_64`