For very large control flow graphs the markControllingTerminatorsLive can stack overflow.
Fix this by doing the work iteratively instead of recursively.
rdar://106198943
Current logic attempts simplification of the base type only if it's
a type variable or a dependent member type. That's valid for correct
code but not for invalid code e.g. `(($T) -> Void).Element` is not
going to be simplified even if `$T` is bound, which causes crashes
in diagnostic mode because `matchTypes` is going to re-introduce
constraint with partially resolved dependent member types and by
doing so make it stale forever which trips constraint system state
verification logic.
Resolves: rdar://105149979
The `isEscaping` function is called a lot from ARCSequenceOpt and ReleaseHoisting.
To avoid quadratic complexity for large functions, limit the amount of work what the EscapeUtils are allowed to to.
This keeps the complexity linear.
The arbitrary limit is good enough for almost all functions.
It lets the EscapeUtils do several hundred up/down walks which is much more than needed in most cases.
Fixes a compiler hang
https://github.com/apple/swift/issues/63846
rdar://105795976
The feature "reflection" was already used in the tests (enabled with
SWIFT_ENABLE_REFLECTION). The new feature tests were triggered even if
the experimental feature was not enabled in people builds.
Change the spelling to "reflection_runtime" to not clash with the
existing feature. Change all the tests I found added lately that has the
existing spelling.
This is a wild guess at what might be causing our persistent, random
String failures on the main branch:
```
Swift(macosx-x86_64) :: Prototypes/CollectionTransformers.swift
Swift(macosx-x86_64) :: stdlib/NSSlowString.swift
Swift(macosx-x86_64) :: stdlib/NSStringAPI.swift
Swift(macosx-x86_64) :: stdlib/StringIndex.swift
Swift-validation(macosx-x86_64) :: stdlib/String.swift
Swift-validation(macosx-x86_64) :: stdlib/StringBreadcrumbs.swift
Swift-validation(macosx-x86_64) :: stdlib/StringUTF8.swift
```
FWIW, it appears this is *not* caused by https://github.com/apple/swift/pull/62717:
that change has also landed on release/5.8, and I haven’t seen these
issues on that branch.
Our atomic breadcrumbs initialization vs its non-atomic loading
gives me an uneasy feeling that this may in fact be a long standing
synchronization issue that is only now causing problems (for whatever
reason). I am unable to reproduce these issues locally, so this guess
may be (and probably is) wildly off the mark, but this PR is likely
to be a good idea anyway, if only to rule out this possibility.
rdar://104751936
It's possible for out-of-scope type variable to be the type of
declaration if such declaration is recursively referenced in
the body of a closure located in its initializer expression.
In such cases type of the variable declaration cannot be connected
to the closure because its not known in advance (determined by the
initializer itself).
Resolves: https://github.com/apple/swift/issues/63455
Introduce SingleValueStmtExpr, which allows the
embedding of a statement in an expression context.
This then allows us to parse and type-check `if`
and `switch` statements as expressions, gated
behind the `IfSwitchExpression` experimental
feature for now. In the future,
SingleValueStmtExpr could also be used for e.g
`do` expressions.
For now, only single expression branches are
supported for producing a value from an
`if`/`switch` expression, and each branch is
type-checked independently. A multi-statement
branch may only appear if it ends with a `throw`,
and it may not `break`, `continue`, or `return`.
The placement of `if`/`switch` expressions is also
currently limited by a syntactic use diagnostic.
Currently they're only allowed in bindings,
assignments, throws, and returns. But this could
be lifted in the future if desired.
* Move Runtime into _Runtime
Fix more _Runtime names
* Add availability to all API
* Build _Runtime and Reflection modules
* Use threading's mutex for all platforms
add stdlib include
Rule GB11 in Unicode Annex 29 is:
GB11: Extended_Pictographic Extend* ZWJ × Extended_Pictographic
However, our forward grapheme breaking state machine implements it as:
GB11: Extended_Pictographic Extend* ZWJ+ × Extended_Pictographic
We implement the correct rules when going backward, which can cause String values to have different counts whether we’re going forward or back.
The rule as implemented would be fine (Unicode doesn’t care much about the placement of grapheme breaks in invalid sequences), but the directional inconsistency messes with String’s Collection conformance.
rdar://104279671
that contain zero-sized payloads, which should resolve a number of issues with
RemoteMirror incorrectly reflecting enum cases and/or measuring the layout of
structures containing enums.
Background: Enum cases that have zero-sized payloads are handled
differently from other payload-bearing cases.
1. For layout purposes, they're treated as
non-payload cases. This can cause an MPE to
actually get represented in memory as a single-payload
or non-payload enum.
2. However, zero-sized payloads are still considered for
extra inhabitant calculations. Since they have no
extra inhabitants, this tends to cause such enums to
also not expose extra inhabitants to containing enums.
This commit makes several change to how RemoteMirror determines
enum layout:
* The various "*EnumTypeInfo" classes now represent
layout mechanisms -- as described in (1) above,
this can differ from the source code concept.
* An Enum "kind" is separately computed to reflect the
source code concept; this ensures that the dumped
type information reflects the source code.
* For single-payload and no-payload _layouts_,
the extra inhabitant calculation has been adjusted
to ensure that zero-sized payloads are correctly
considered.
Resolves: rdar://92945673
Fix computation of generic params per level when a generic type is
nested in a non-generic one. For example, for the following code:
```
class A {
class B<T, U> {
}
}
```
Fix the array of generic params per level from [2] to [0, 2].
rdar://103457629
It's ok to drop the global-actor qualifier `@G` from a function's type if:
- the cast is happening in a context isolated to global-actor `G`
- the function value will not be `@Sendable`
- the function value is not `async`
It's primarily safe to drop the attribute because we're already in the
same isolation domain. So it's OK to simply drop the global-actor
if we prevent the value from later leaving that isolation domain.
This means we no longer need to warn about code like this:
```
@MainActor func doIt(_ x: [Int], _ f: @MainActor (Int) -> ()) {
x.forEach(f)
// warning: converting function value of type '@MainActor (Int) -> ()' to '(Int) throws -> Void' loses global actor 'MainActor'
}
```
NOTE: this implementation is a bit gross in that the constraint solver
might emit false warnings about casts it introduced that are actually
safe. This is mainly because closure isolation is only fully determined
after constraint solving. See the FIXME's for more details.
resolves rdar://94462333