Recognize dependence on the address of a trivial 'var' as an "access" dependence
instead of an "unknown" dependence. This allows the mark_dependence to be
resolved as "[nonescaping]".
This pass rewrites mark_depenendence to ignore "useless" borrow scopes. It was
also accidentally rewriting a dependence on a loaded value, which may redirect the
dependence to the access scope used to load that value. That access scope may be
narrower than the lifetime of the loaded value which could result in invalid
SIL. Do not rewrite this mark_dependence:
%access = begin_access [read] [unknown] %base
%load = load [trivial] %access
end_access %access
%adr = pointer_to_address
%md = mark_dependence [unresolved] %adr on %load
Fixes rdar://142424000 (Swift compiler crashes with Assertion failed
(isa<UnreachableInst>(block->getTerminator())))
* `users`: maps from a sequence of operands to a sequence of instructions
* `users(ofType:)` : as `users`, but filters users of a certain instruction type
* `Value.users`: = `Value.uses.users`
We can assume that memory is already initialized at the point of a 'yield'; a
yield use does not need to invalidate the single-initialization property for
temporary stack allocations.
Look through a call to the ConvertPointerToPointerArgument compiler intrinsic
just like it is a copy of the pointer. At the source level, that's all it is:
Treat this like a direct use of the argument 'p' rather than the result of the
invisible pointer conversion call:
func foo(_: UnsafeRawPointer)
func bar(p: UnsafePointer<T>) {
foo(p)
}
This is needed after running the SSAUpdater for an existing OSSA value, because the updater can
insert unnecessary phis in the middle of the original liverange which breaks up the original
liverange into smaller ones:
```
%1 = def_of_owned_value
%2 = begin_borrow %1
...
br bb2(%1)
bb2(%3 : @owned $T): // inserted by SSAUpdater
...
end_borrow %2 // use after end-of-lifetime!
destroy_value %3
```
It's not needed to run this utility if SSAUpdater is used to create a _new_ OSSA liverange.
It hoists `destroy_value` instructions without shrinking an object's lifetime.
This is done if it can be proved that another copy of a value (either in an SSA value or in memory) keeps the referenced object(s) alive until the original position of the `destroy_value`.
```
%1 = copy_value %0
...
last_use_of %0
// other instructions
destroy_value %0 // %1 is still alive here
```
->
```
%1 = copy_value %0
...
last_use_of %0
destroy_value %0
// other instructions
```
The benefit of this optimization is that it can enable copy-propagation by moving destroys above deinit barries and access scopes.
Just don't store the begin instruction.
This led to problem if the "begin" was not actually an instruction but a block argument.
Using the first instruction of that block is not correct in case the range ends immediately at the first instruction, e.g.
```
bb0(%0 : @owned $C):
destroy_value %0
```
Sometimes it can happen that a deinit function, which is imported from another module, has shared linkage.
In this case it is important to de-serialize the function body. Otherwise it would be illegal SIL.
Unfortunately I don't have a test case for this.
When replacing an `enum` - `unchecked_enum_data` pair and the enum's operand is another non-trivial enum which is constructed with a trivial payload, and this happens in different basic blocks, we need to insert a compensating `destroy_value`.
Fixes a verifier crash
rdar://139787167
For example:
```
%1 = begin_borrow %0
%2 = br bb1(%1, %1)
bb1(%3 : @reborrow @guaranteed, %4: @guaranteed):
// %4 is a guaranteed forwarding phi without any forwarding instructions between the begin_borrow and the incoming value.
```
Also improve the comments
Add `Value.constantAccessPath`. It is like `accessPath`, but ensures that the projectionPath only contains "constant" elements.
This means: if the access contains an `index_addr` projection with a non-constant index, the `projectionPath` does _not_ contain the `index_addr`.
Instead, the `base` is an `AccessBase.index` which refers to the `index_addr`.
* fix a false error if a derived class has different generic parameters than its base class
* fix a similar problem if a non-generic class derives from a generic class
* fix a compiler crash for calling a class method on a class metatype
rdar://137692055