Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.
This instruction was given forwarding ownership in the original OSSA
implementation. That will obviously lead to memory leaks. Remove
ownership from this instruction and verify that it is never used for
non-trivial types.
At the cost of adding an unsafe bitcast implementation detail,
simplified the code involved to register a new FunctionTest when adding
one.
Also simplifies how Swift native `FunctionTest`s are registered with the
C++ registry.
Now, the to-be-executed thin closure for native Swift `FunctionTest`s is
stored under within the swift::test::FunctionTest instance corresponding
to it. Because its type isn't representable in C++, `void *` is used
instead. When the FunctionTest is invoked, a thunk is called which
takes the actual test function and bridged versions of the arguments.
That thunk unwraps the arguments, casts the stored function to the
appropriate type, and invokes it.
Thanks to Andrew Trick for the idea.
All SILArgument types are "block arguments". There are three kinds:
1. Function arguments
2. Phis
3. Terminator results
In every situation where the source of the block argument matters, we
need to distinguish between these three. Accidentally failing to
handle one of the cases is an perpetual source of compiler
bugs. Attempting to handle both phis and terminator results uniformly
is *always* a bug, especially once OSSA has phi flags. Even when all
cases are handled correctly, the code that deals with data flow across
blocks is incomprehensible without giving each case a type. This
continues to be a massive waste of time literally every time I review
code that involves cross-block control flow.
Unfortunately, we don't have these C++ types yet (nothing big is
blocking that, it just wasn't done). That's manageable because we can
use wrapper types on the Swift side for now. Wrapper types don't
create any more complexity than protocols, but they do sacrifice some
usability in switch cases.
There is no reason for a BlockArgument type. First, a function
argument is a block argument just as much as any other. BlockArgument
provides no useful information beyond Argument. And it is nearly
always a mistake to care about whether a value is a function argument
and not care whether it is a phi or terminator result.
For chains of async functions where suspensions can be statically
proven to never be required, this pass removes all suspensions and
turns the functions into synchronous functions.
For example, this function does not actually require any suspensions,
once the correct executor is acquired upon initial entry:
```
func fib(_ n: Int) async -> Int {
if n <= 1 { return n }
return await fib(n-1) + fib(n-2)
}
```
So we can turn the above into this for better performance:
```
func fib() async -> Int {
return fib_sync()
}
func fib_sync(_ n: Int) -> Int {
if n <= 1 { return n }
return fib(n-1) + fib(n-2)
}
```
while rewriting callers of `fib` to use the `sync` entry-point
when we can prove that it will be invoked on a compatible executor.
This pass is currently experimental and under development. Thus, it
is disabled by default and you must use
`-enable-experimental-async-demotion` to try it.
This instructions marks the point where all let-fields of a class are initialized.
This is important to ensure the correctness of ``ref_element_addr [immutable]`` for let-fields,
because in the initializer of a class, its let-fields are not immutable, yet.
Codegen is the same, but `begin_dealloc_ref` consumes the operand and produces a new SSA value.
This cleanly splits the liferange to the region before and within the destructor of a class.
I was originally hoping to reuse mark_must_check for multiple types of checkers.
In practice, this is not what happened... so giving it a name specifically to do
with non copyable types makes more sense and makes the code clearer.
Just a pure rename.
For example:
```
var p = Point(x: 10, y: 20)
let o = UnsafePointer(&p)
```
Also support outlined arrays with pointers to other globals. For example:
```
var g1 = 1
var g2 = 2
func f() -> [UnsafePointer<Int>] {
return [UnsafePointer(&g1), UnsafePointer(&g2)]
}
```
* add `GlobalVariable.staticInitializerInstructions` to access all initializer instructions of a global
* implement `GlobalVariable.staticInitValue` with `GlobalVariable.staticInitializerInstructions`
* this requires that `InstructionList.reversed()` works without accessing the parent block of the iterator instruction
* allow `Context.erase(instruction:)` to delete instructions from a global's initializer list, which means to handle the case where a deleted instruction has no parent function.
For a redundant pair of pointer-address conversions, e.g.
%2 = address_to_pointer %1
%3 = pointer_to_address %2 [strict]
replace all uses of %3 with %1.
A begin_apply can yield multiple addresses. We need to store the result of the apply in order to distinguish between two AccessBases with different results from the same begin_apply.
`ownership` is a bad name in `LoadInst`, because it hides `Value.ownership`.
Therefore rename it to `loadOwnership`.
Do the same for ownership in StoreInst to be consistent.
Before this change, if a global variable is required to be statically initialized (e.g. due to @_section attribute), we don't allow its type to be a struct, only a scalar type works. This change improves on that by teaching MandatoryPerformanceOptimizations pass to inline struct initializer calls into initializer of globals, as long as they are simple enough so that we can be sure that we don't trigger recursive/infinite inlining.