This executable is intended to be installed in the toolchain and act as
an executable compiler plugin just like other 'macro' plugins.
This plugin server has an optional method 'loadPluginLibrary' that
dynamically loads dylib plugins.
The compiler has a newly added option '-external-plugin-path'. This
option receives a pair of the plugin library search path (just like
'-plugin-path') and the corresponding "plugin server" path, separated
by '#'. i.e.
-external-plugin-path
<plugin library search path>#<plugin server executable path>
For exmaple, when there's a macro decl:
@freestanding(expression)
macro stringify<T>(T) -> (T, String) =
#externalMacro(module: "BasicMacro", type: "StringifyMacro")
The compiler look for 'libBasicMacro.dylib' in '-plugin-path' paths,
if not found, it falls back to '-external-plugin-path' and tries to find
'libBasicMacro.dylib' in them. If it's found, the "plugin server" path
is launched just like an executable plugin, then 'loadPluginLibrary'
method is invoked via IPC, which 'dlopen' the library path in the plugin
server. At the actual macro expansion, the mangled name for
'BasicMacro.StringifyMacro' is used to resolve the macro just like
dylib plugins in the compiler.
This is useful for
* Isolating the plugin process, so the plugin crashes doesn't result
the compiler crash
* Being able to use library plugins linked with other `swift-syntax`
versions
rdar://105104850
This modifies the ClangImporter to introduce an opaque placeholder
representation for forward declared Objective-C interfaces and
protocols when imported into Swift.
In the compiler, the new functionality is hidden behind a frontend
flag -enable-import-objc-forward-declarations, and is on by default
for language mode >6.
The feature is disabled entirely in LLDB expression evaluation / Swift
REPL, regardless of language version.
Previously enum AccessLimitKind was
added to distinguish access scopes b/t package and public while keeping
DeclContext null but it proved to be too limiting. This PR creates package specific entries for DeclContext and
ASTHierarchy. It create a new class PackageUnit that can be set as the parent DeclContext of ModuleDecl. This PR
contains addition of such entries but not the use of them; the actual use of them will be in the upcoming PRs.
Resolves rdar://106155600
Executable compiler plugins are programs invoked by the host compiler
and communicate with the host with IPC via standard IO (stdin/stdout.)
Each message is serialized in JSON, prefixed with a header which is a
64bit little-endian integer indicating the size of the message.
* Basic/ExecuteWithPipe: External program invocation. Lik
llvm::sys::ExecuteNoWait() but establishing pipes to the child's
stdin/stdout
* Basic/Sandbox: Sandboxed execution helper. Create command line
arguments to be executed in sandbox environment (similar to SwiftPM's
pluging sandbox)
* AST/PluginRepository: ASTContext independent plugin manager
* ASTGen/PluginHost: Communication with the plugin. Messages are
serialized by ASTGen/LLVMJSON
rdar://101508815
Instead of mangling class template specializations with the prefix "__CxxTemplateInst," simply set the decl name as the class templates plus the types that it is specialized on (so `vector<Int>` rather than `__CxxTemplateInstNSt3__16vectorIi...`).
This is mainly to improve diagnostics. As a side effect of this change, if anyone copies the name of a class template specializaiton from an error/warning and uses it in source code, the compiler will error (that class templates aren't available in swift) rather than silently passing only to cause serailization failures down the road.
This changes the scanner's behavior to "resolve" a discovered module's dependencies to a set of Module IDs: module name + module kind (swift textual, swift binary, clang, etc.).
The 'ModuleDependencyInfo' objects that are stored in the dependency scanner's cache now carry a set of kind-qualified ModuleIDs for their dependencies, in addition to unqualified imported module names of their dependencies.
Previously, the scanner's internal state would cache a module dependnecy as having its own set of dependencies which were stored as names of imported modules. This led to a design where any time we needed to process the dependency downstream from its discovery (e.g. cycle detection, graph construction), we had to query the ASTContext to resolve this dependency's imports, which shouldn't be necessary. Now, upon discovery, we "resolve" a discovered dependency by executing a lookup for each of its imported module names (this operation happens regardless of this patch) and store a fully-resolved set of dependencies in the dependency module info.
Moreover, looking up a given module dependency by name (via `ASTContext`'s `getModuleDependencies`) would result in iterating over the scanner's module "loaders" and querying each for the module name. The corresponding modules would then check the scanner's cache for a respective discovered module, and if no such module is found the "loader" would search the filesystem.
This meant that in practice, we searched the filesystem on many occasions where we actually had cached the required dependency, as follows:
Suppose we had previously discovered a Clang module "foo" and cached its dependency info.
-> ASTContext.getModuleDependencies("foo")
--> (1) Swift Module "Loader" checks caches for a Swift module "foo" and doesn't find one, so it searches the filesystem for "foo" and fails to find one.
--> (2) Clang Module "Loader" checks caches for a Clang module "foo", finds one and returns it to the client.
This means that we were always searching the filesystem in (1) even if we knew that to be futile.
With this change, queries to `ASTContext`'s `getModuleDependencies` will always check all the caches first, and only delegate to the scanner "loaders" if no cached dependency is found. The loaders are then no longer in the business of checking the cached contents.
To handle cases in the scanner where we must only lookup either a Swift-only module or a Clang-only module, this patch splits 'getModuleDependencies' into an alrady-existing 'getSwiftModuleDependencies' and a newly-added 'getClangModuleDependencies'.
When doing solver-based cursor info, we’ll type check the expression in question using a normal `typeCheckASTNodeAtLoc` call (not in code completion mode) and listen for any solutions that were produced during the type check.
A macro declaration contains the external module and type name of the
macro's implementation. Use that information to find the macro type
(via its type metadata accessor) in a loaded plugin, so we no longer
require the "allMacros" array. Instead, each macro implementation type
must be a public struct.
Since we are now fully dependent on the macro declaration for
everything about a macro except its kind, remove most of the query
infrastructure for compiler plugins.
Replace the macro registration scheme based on the allMacros array with
Allow more than one macro plugin to introduce a macro with the same
name, and let the constraint solver figure out which one to call. Also
eliminates a potential use-after-free if we somehow find additional
compiler plugins to load after having expanded a macro.
Type check user-defined macros plugins with user-provided type signatures.
Also, load plugin libraries with `RTLD_LOCAL` instead of `RTLD_GLOBAL` to prevent symbol collision between plugins. `llvm::sys::DynamicLibrary` only supports `RTLD_GLOBAL` so we use the plain `dlopen` instead. This does not work on Windows and needs to be fixed.
Friend PR: apple/swift-syntax#1042
Allow user-defined macros to be loaded from dynamic libraries and evaluated.
- Introduce a _CompilerPluginSupport module installed into the toolchain. Its `_CompilerPlugin` protocol acts as a stable interface between the compiler and user-defined macros.
- Introduce a `-load-plugin-library <path>` attribute which allows users to specify dynamic libraries to be loaded into the compiler.
A macro library must declare a public top-level computed property `public var allMacros: [Any.Type]` and be compiled to a dynamic library. The compiler will call the getter of this property to obtain and register all macros.
Known issues:
- We current do not have a way to strip out unnecessary symbols from the plugin dylib, i.e. produce a plugin library that does not contain SwiftSyntax symbols that will collide with the compiler itself.
- `MacroExpansionExpr`'s type is hard-coded as `(Int, String)`. It should instead be specified by the macro via protocol requirements such as `signature` and `genericSignature`. We need more protocol requirements in `_CompilerPlugin` to handle this.
- `dlopen` is not secure and is only for prototyping use here.
Friend PR: apple/swift-syntax#1022
Intro ASTContext::setIgnoreAdjacentModules to change module loading to
accept load only resilient modules from their swiftinterfaces, ignoring
the adjacent module and any silencing swiftinterfaces errors.
The old syntax was
@opened("UUID") constraintType
Where constraintType was the right hand side of a conformance requirement.
This would always create an archetype where the interface type was `Self`,
so it couldn't cope with member types of opened existential types.
Member types of opened existential types is now a thing with SE-0309, so
this lack of support prevented writing SIL test cases using this feature.
The new syntax is
@opened("UUID", constraintType) interfaceType
The interfaceType is a type parameter rooted in an implicit `Self`
generic parameter, which is understood to be the underlying type of the
existential.
Fixes rdar://problem/93771238.
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998
This reverts the revert commit df353ff3c0.
Also, I added a frontend option to disable this optimization: `-disable-readonly-static-objects`
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998
This patch adds an optional callback function member to the AST Context.
The callback gets invoked when a new module (or overlay module) gets
loaded.
This can be used for instance by other clients, such as lldb, to perform
actions when a module gets loaded, like showing progress to the end-user.
rdar://94165195
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds an optional callback function member to the AST Context.
The callback gets invoked when a new module (or overlay module) gets
loaded.
This can be used for instance by other clients, such as lldb, to perform
actions when a module gets loaded, like showing progress to the end-user.
rdar://94165195
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This prepares us to generalize ObjC selector collision diagnostics to also include protocols. NFC in this commit because, even though Sema and ClangImporter now try to record ObjC methods on non-`ClassDecl`s, `NominalTypeDecl::createObjCMethodLookup()` still doesn’t create ObjC method tables for them, so the calls are no-ops.
* [Distributed] dist actor always has default executor (currently)
* [Distributed] extra test for missing makeEncoder
* [DistributedDecl] Add DistributedActorSystem to known SDK types
* [DistributedActor] ok progress on getting the system via witness
* [Distributed] allow hop-to `let any: any X` where X is DistActor
* [Distributed] AST: Add an accessor to determine whether type is distributed actor
- Classes have specialized method on their declarations
- Archetypes and existentials check their conformances for
presence of `DistributedActor` protocol.
* [Distributed] AST: Account for distributed members declared in class extensions
`getConcreteReplacementForProtocolActorSystemType` should use `getSelfClassDecl`
otherwise it wouldn't be able to find actor if the member is declared in an extension.
* [Distributed] fix ad-hoc requirement checks for 'mutating'
[PreChecker] LookupDC might be null, so account for that
* [Distributed] Completed AST synthesis for dist thunk
* [Distributed][ASTDumper] print pretty distributed in right color in AST dumps
* wip on making the local/remote calls
* using the _local to mark the localCall as known local
* [Distributed] fix passing Never when not throwing
* fix lifetime of mangled string
* [Distributed] Implement recordGenericSubstitution
* [Distributed] Dont add .
* [Distributed] dont emit thunk when func broken
* [Distributed] fix tests; cleanups
* [Distributed] cleanup, move is... funcs to DistributedDecl
* [Distributed] Remove SILGen for distributed thunks, it is in Sema now!
* [Distributed] no need to check stored props in protocols
* remote not used flag
* fix mangling test
* [Distributed] Synthesis: Don't re-use AST nodes for `decodeArgument` references
* [Distributed] Synthesis: Make sure that each thunk parameter has an internal name
* [Distributed/Synthesis] NFC: Add a comment regarding empty internal parameter names
* [Distributed] NFC: Adjust distributed thunk manglings in the accessor section test-cases
* cleanup
* [Distributed] NFC: Adjust distributed thunk manglings in the accessor thunk test-cases
* review follow ups
* xfail some linux tests for now so we can land the AST thunk
* Update distributed_actor_remote_functions.swift
Co-authored-by: Pavel Yaskevich <xedin@apache.org>