Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
This cleans up 90 instances of this warning and reduces the build spew
when building on Linux. This helps identify actual issues when
building which can get lost in the stream of warning messages. It also
helps restore the ability to build the compiler with gcc.
Add SymbolObjectCodeRequest, which emits object
code for a specific set of symbols by querying
TBDGen for the source of the symbols, and asking
SILGen (and eventually IRGen) to emit them.
Rename the member on ASTLoweringDescriptor and
IRGenDescriptor to make it more explicit it returns
the files that need emitting, rather than just the
files that happen to be present. This distinction
will become important once we start emitting code
only for a specific set of symbols.
With an inverted pipeline, IRGen needs to be able
to compute the linker directives itself, so sink
it down such that it can be computed by the
`IRGenDescriptor`.
Split off the notion of "recording" dependencies from the notion of
"collecting" dependencies. This corrects an oversight in the previous
design where dependency replay and recording were actually not "free" in
WMO where we actually never track dependencies. This architecture also
lays the groundwork for the removal of the referenced name trackers.
The algorithm builds upon the infrastructure for dependency sources and
sinks laid down during the cut over to request-based dependency tracking
in #30723.
The idea of the naive algorithm is this:
For a chain of requests A -> B* -> C -> D* -> ... -> L where L is a lookup
request and all starred requests are cached, once L writes into the
dependency collector, the active stack is walked and at each cache-point
the results of dependency collection are associated with the request
itself (in this example, B* and D* have all the names L found associated
with them). Subsequent evaluations of these cached requests (B* and D*
et al) will then *replay* the previous lookup results from L into the
active referenced name tracker. One complication is, suppose the
evaluation of a cached request involves multiple downstream name
lookups. More concretely, suppose we have the following request trace:
A* -> B -> L
|
-> C -> L
|
-> D -> L
|
-> ...
Then A* must see the union of the results of each L. If this reminds
anyone of a union-find, that is no accident! A persistent union-find
a la Conchon and Filliatre is probably in order to help bring down peak
heap usage...
Define a new type DependencyCollector that abstracts over the
incremental dependency gathering logic. This will insulate the
request-based name tracking code from future work on private,
intransitive dependencies.
swift::GeneratedModule encapsulates an llvm::Module, llvm::LLVMContext
pair that must live and die together. It has convenient accessors for
projecting the module and context components. The meat of this type is
the two conversion functions, which transfer ownership of either the
module component to the caller or the module and context to ORCJIT.
This is because ORC enforces an ownership contract that is distinct from
LLVM's rather wild ownership story for modules and their associated
contexts. See http://llvm.org/docs/ORCv2.html#how-to-use-threadsafemodule-and-threadsafecontext
A request is intended to be a pure function of its inputs. That function could, in theory, fail. In practice, there were basically no requests taking advantage of this ability - the few that were using it to explicitly detect cycles can just return reasonable defaults instead of forwarding the error on up the stack.
This is because cycles are checked by *the Evaluator*, and are unwound by the Evaluator.
Therefore, restore the idea that the evaluate functions are themselves pure, but keep the idea that *evaluation* of those requests may fail. This model enables the best of both worlds: we not only keep the evaluator flexible enough to handle future use cases like cancellation and diagnostic invalidation, but also request-based dependencies using the values computed at the evaluation points. These aforementioned use cases would use the llvm::Expected interface and the regular evaluation-point interface respectively.