This eliminates the overhead of doing name lookups during parsing (which is unncessary during syntactic parsing) by enabling the `EnableASTScopeLookup` lang option.
Instead of creating syntax nodes directly, modify the parser to invoke an abstract interface 'SyntaxParseActions' while it is parsing the source code.
This decouples the act of parsing from the act of forming a syntax tree representation.
'SyntaxTreeCreator' is an implementation of SyntaxParseActions that handles the logic of creating a syntax tree.
To enforce the layering separation of parsing and syntax tree creation, a static library swiftSyntaxParse is introduced to compose the two.
This decoupling is important for introducing a syntax parser library for SwiftSyntax to directly access parsing.
Parsing collection literal expression used to take exponential time
depending on the nesting level of the first element.
Stop using 'parseList()' because using it complicates libSyntax parsing.
rdar://problem/45221238 / https://bugs.swift.org/browse/SR-9220
rdar://problem/38913395 / https://bugs.swift.org/browse/SR-7283
<rdar://problem/46548531> Extend @available to support PackageDescription
This introduces a new private availability kind "_PackageDescription" to
allow availability testing by an arbitary version that can be passed
using a new command-line flag "-swiftpm-manifest-version". The semantics
are exactly same as Swift version specific availability. In longer term,
it maybe possible to remove this enhancement once there is
a language-level availability support for 3rd party libraries.
Motivation:
Swift packages are configured using a Package.swift manifest file. The
manifest file uses a library called PackageDescription, which contains
various settings that can be configured for a package. The new additions
in the PackageDescription APIs are gated behind a "tools version" that
every manifest must declare. This means, packages don't automatically
get access to the new APIs. They need to update their declared tools
version in order to use the new API. This is basically similar to the
minimum deployment target version we have for our OSes.
This gating is important for allowing packages to maintain backwards
compatibility. SwiftPM currently checks for API usages at runtime in
order to implement this gating. This works reasonably well but can lead
to a poor experience with features like code-completion and module
interface generation in IDEs and editors (that use sourcekit-lsp) as
SwiftPM has no control over these features.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
`#assert` is a new static assertion statement that will let us write
tests for the new constant evaluation infrastructure that we are working
on. `#assert` works by lowering to a `Builtin.poundAssert` SIL
instruction. The constant evaluation infrastructure will look for these
SIL instructions, const-evaluate their conditions, and emit errors if
the conditions are non-constant or false.
This commit implements parsing, typechecking and SILGen for `#assert`.
Dynamic replacements are currently written in extensions as
extension ExtendedType {
@_dynamicReplacement(for: replacedFun())
func replacement() { }
}
The runtime implementation allows an implementation in the future where
dynamic replacements are gather in a scope and can be dynamically
enabled and disabled.
For example:
dynamic_extension_scope CollectionOfReplacements {
extension ExtentedType {
func replacedFun() {}
}
extension ExtentedType2 {
func replacedFun() {}
}
}
CollectionOfReplacements.enable()
CollectionOfReplacements.disable()
Implement 'get', 'set', 'willSet', 'didSet' completion at the beginning
of accessor position.
var value: Ty {
<HERE> // 'get', 'set', 'willSet' and 'didSet' along with normal
// completion.
}
var value: Ty {
get { return ... }
<HERE> // 'get', 'set', 'willSet' and 'didSet' only.
}
rdar://problem/20957182
Type may depend on its suffix. Parsing complete expression including its
suffix improves context type info around the CC token.
rdar://problem/44143964
Make sure StructureMarkerRAII checks structure nesting level on all paths. Previously swift crashed with no diagnostic on deeply nested '('. Now we print an error when more than 256 parens deep, just as we always have for '['.
fixes SR-4866
* Use 'parseAbstractFunctionBody()' for accessors as well. This
simplifies the implementation, and makes 'parseAbstractFunctionBody()'
the single point of parsing body of every 'AbstructFunctionDecl' types.
* Handle completion in 'parseExprKeyPath()' instead of
'parseExprPostfixSuffix()'.
* Fix a crash for implicit type keypath. e.g. '\.path.<complete>'. (SR-8042).
* Use 'completeExprKeyPath()' callback.
* Implement completion without '.'. e.g. '\Ty.path<complete>'
* Improved handling for 'subscript' in completion.
* Improved handling for optional unwrapping in completion.
https://bugs.swift.org/browse/SR-8042
rdar://problem/41262612
Previously it was erroneously treating such invalid interpolation segment as 'incomplete',
even though additional user input, will not 'complete' it.
rdar://28498239
For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.
`_read` accessors do not make any effort yet to avoid copying the
value being yielded. I'll work on it in follow-up patches.
Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.
SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.
rdar://35399664
There are two general constructor forms here:
- One took the number of parameter lists, to be filled in later.
Now, this takes a boolean indicating if there is an implicit
'self'.
- The other one took the actual parameter lists and filled them
in right away. This now takes a separate 'self' ParamDecl and
ParameterList.
Instead of storing the number of parameter lists, an
AbstractFunctionDecl now only needs to store if there is a 'self'
or not.
I've updated most places that construct AbstractFunctionDecls to
properly use these new forms. In the ClangImporter, there is
more code that remains to be untangled, so we continue to build
multiple ParameterLists and unpack them into a ParamDecl and
ParameterList at the last minute.
As part of this, lift the now-unnecessary restriction against
combining a non-mutable addressor with a setter. I've also
tweaked some of the diagnostics.
This is in preparation for generalized accessors.